
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2023 1

DreaMR: Diffusion-driven Counterfactual
Explanation for Functional MRI
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Abstract— Deep learning analyses have offered sensitiv-
ity leaps in detection of cognition-related variables from
functional MRI (fMRI) measurements of brain responses.
Yet, as deep models perform hierarchical nonlinear trans-
formations on fMRI data, interpreting the association be-
tween individual brain regions and the detected variables
is challenging. Among explanation approaches for deep
fMRI classifiers, attribution methods show poor specificity
and perturbation methods show limited sensitivity. While
counterfactual generation promises to address these lim-
itations, previous counterfactual methods based on vari-
ational or adversarial priors can yield suboptimal sample
fidelity. Here, we introduce the first diffusion-driven coun-
terfactual method, DreaMR, to enable fMRI interpretation
with high fidelity. DreaMR performs diffusion-based resam-
pling of an input fMRI sample to alter the decision of a
downstream classifier, and then computes the difference
between the original sample and the counterfactual sam-
ple for explanation. Unlike conventional diffusion methods,
DreaMR leverages a novel fractional multi-phase-distilled
diffusion prior to improve inference efficiency without com-
promising fidelity, and it employs a transformer architec-
ture to account for long-range spatiotemporal context in
fMRI scans. Comprehensive experiments on neuroimaging
datasets demonstrate the superior fidelity and efficiency of
DreaMR in sample generation over state-of-the-art counter-
factual methods for fMRI explanation.

Index Terms— counterfactual, explanation, interpreta-
tion, generative, diffusion, functional MRI

I. INTRODUCTION

Functional magnetic resonance imaging (fMRI) enables
non-invasive cognitive assessments by capturing time-varying
blood-oxygen-level-dependent (BOLD) responses across the
brain [1]. Spatiotemporally measured BOLD responses can be
analyzed to infer associations between individual brain regions
and cognition-related variables. A traditional framework in
neuroscience performs inference via linear classifiers that are
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trained to predict variables given responses [2]. The classifier
weight for a brain region is then taken to reflect the importance
of that region in detecting the respective variable. Although
this traditional approach offers ease of interpretation, linear
classifiers typically suffer from poor sensitivity [3]. In recent
years, deep-learning classifiers have gained prominence as they
show substantially higher sensitivity to fine-grained patterns in
fMRI data [4]–[12]. Despite this important benefit, hierarchical
layers of nonlinear transformation in deep models obscure
precise associations between brain responses and cognition-
related variables, introducing an interpretation challenge and
creating a barrier to methodological trust [13]. As such, there is
a dire need for explanation methods that highlight the critically
important set of input features (i.e., brain responses) for deep
fMRI models to help interpret their decisions.

An emerging framework is counterfactual explanation that
aims to identify a minimal, plausible set of changes in the
features of an input fMRI sample (i.e., a subject’s fMRI scan)
that is sufficient to alter the decision of a downstream analysis
model [14]. To do this, a generative prior is commonly trained
to capture the distribution of original fMRI samples such that
new, random samples can be drawn from the learned data
distribution [13]. Afterwards, the trained prior is employed
to regenerate the values of spatiotemporal responses in an
original input sample, in order to produce a counterfactual
sample that is proximal to the original sample, albeit that
changes the decision of the downstream model [15]. The
difference between the two samples is then inspected to
interpret associations between brain regions and cognitive
state [14]. Counterfactual methods can offer superior feature
specificity against attribution methods, which derive gradient
or activation heatmaps that can be broadly distributed across
input features [16], [17]. They can also produce more sensitive
interpretations against perturbation methods, which perform
local degradations on input features that can disrupt global
coherence [18], [19]. Nevertheless, the performance of coun-
terfactual methods depend critically on the fidelity of samples
synthesized by the underlying generative prior.

Previous studies on counterfactual explanation have com-
monly proposed variational autoencoder (VAE) or generative
adversarial network (GAN) priors trained to capture the distri-
bution of fMRI data [14], [15], [20]. These priors synthesize
counterfactuals with high efficiency, albeit VAEs often suffer
from relatively low sample quality due to loss of detailed
features, and GANs suffer from training instabilities that
can hamper sample quality or diversity [21]. A promising
surrogate for sample generation is diffusion priors that offer
high sample fidelity via a many-step sampling process [22],
[23]. Few recent imaging studies have considered diffusion-
based counterfactual generation to detect anomalous lesions
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in anatomical MRI and X-ray scans [24]–[27]. Yet, to our
knowledge, diffusion priors have not been explored for coun-
terfactual explanation in multi-variate fMRI analysis. This may
be partly related to excessive inference times of conventional
diffusion priors such as DDPM or DDIM that require hundreds
of steps to generate a single sample [28]. When coupled
with the high dimensionality of fMRI data, inefficiency of
conventional diffusion priors can be particularly limiting in
application domains that benefit from rapid data processing
such as real-time fMRI or cohort fMRI studies [29], [30].

Here, we propose a novel diffusion-driven counterfactual
explanation method, DreaMR, to interpret downstream fMRI
classifiers with improved fidelity and efficiency. The proposed
method trains a class-agnostic diffusion prior for fMRI data,
and the trained prior generates a counterfactual sample with
guidance from a downstream classifier to alter its decision
(Fig. 1). To improve inference efficiency without compromis-
ing sample quality, DreaMR leverages a novel fractional multi-
phase-distilled diffusion (FMD) prior that splits the diffusion
process into consecutive fractions and performs multi-phase
distillation in each fraction (Fig. 2). Unlike regular diffu-
sion priors implemented with UNet backbone architectures,
DreaMR uniquely leverages an efficient transformer archi-
tecture of linear complexity in conjunction with the FMD
prior to capture long-range spatiotemporal context in fMRI
scans. During counterfactual generation, classifier-guidance
is injected separately into each diffusion fraction to tailor
synthesis of intermediate samples in proximity of the orig-
inal sample. The difference between the original and the
final counterfactual samples reflects the contribution of brain
regions to the model decision. We report comprehensive
demonstrations to explain deep classifiers for sex detection
on resting-state fMRI scans, and for cognitive task detection
in task-based fMRI scans. We find that DreaMR achieves
superior fidelity against competing explanation methods, and
it substantially outperforms conventional diffusion priors in
inference efficiency. Code to implement DreaMR is available
at https://github.com/icon-lab/DreaMR.

Contributions:

• To our knowledge, we introduce the first diffusion-driven
counterfactual explanation method in the literature for
multi-variate fMRI analysis.

• DreaMR generates counterfactual samples with a novel
fractional multi-phase-distilled diffusion prior to boost
inference efficiency without compromising quality.

• Unlike conventional diffusion methods, DreaMR lever-
ages a transformer architecture of linear complexity to
capture long-range spatiotemporal context in fMRI scans.

II. RELATED WORK

A. Explanation of fMRI Models

Two prominent frameworks have been proposed in the
literature to address the interpretation challenge for deep fMRI
classifiers. A first framework is intrinsic interpretation where
analyses are conducted using specialized models, such as
linearized or graph classifiers, with restricted designs to permit

an inherent degree of explanation [11], [31], [32]. Model-
specific explanation is then attained by inspecting internal
parameters, but use of restricted designs can elicit losses in
classification performance [33]–[36]. A more flexible frame-
work is post-hoc explanation where analyses are conducted
using an unrestricted model, and the influences of model inputs
on the output are observed for interpretation. Among post-hoc
techniques, attribution methods derive heatmaps across input
features to estimate their salience, taken as gradients [37], [38],
activations [39]–[42], or a weighted combination of gradients
and activations for the target class [16], [17], [43]. Attribu-
tion methods often require architecture-based modifications
that limit practicality, and produce over-broad heatmaps that
degrade interpretation specificity. To improve local specificity,
perturbation methods introduce patch-level degradation on
input features through operations such as occlusion [5], [11],
[18], [19], [44]–[46]. Yet, perturbation-methods can be com-
putationally heavy and they often produce globally-incoherent
results that hamper the sensitivity of interpretations.

Counterfactual generation is an alternative post-hoc tech-
nique that resamples original data via a generative prior
in order to enforce desired changes in input features [47],
[48]. In the case of explaining fMRI classifiers, the aim of
counterfactual generation would be to identify a minimally-
sufficient set of changes in input features that flip the classifier
decision [14]. Although improvements over attribution and
perturbation methods have been reported for this application,
VAE and GAN priors in previous counterfactual methods can
suffer from low sample fidelity that in turn limits the reliability
of explanations [13]. Recent machine learning studies advocate
diffusion priors as a promising surrogate for reliable sample
generation, albeit conventional diffusion priors are known to
suffer from an inherent trade-off between sampling quality and
efficiency [22], [23]. This has impeded adoption of diffusion
priors in counterfactual generation that requires iterated re-
sampling of each high-dimensional fMRI data sample until
the respective model decision is flipped. To address these
open issues, here we introduce DreaMR, the first diffusion-
driven explanation method for multivariate fMRI analysis to
our knowledge.

B. Counterfactual Generation
Recent computer vision studies have considered diffusion

priors to generate counterfactual natural images from desired
object classes. [49]–[51] propose conventional diffusion priors
based on a common UNet architecture. Interleaved sampling
is used to trade-off sample quality in return for efficiency
[50], [51]. Unlike conventional diffusion priors that typically
require hundreds of diffusion steps even with interleaved
sampling, DreaMR improves practicality via its novel FMD
prior that achieves high sampling efficiency and quality via
multi-phase distillation on consecutive fractions of the diffu-
sion process, where each fraction uses a dedicated denoising
network. To our knowledge, FMD is the first diffusion prior to
perform fraction-specific distillation in the literature. Further-
more, DreaMR uniquely implements denoising networks via
a transformer architecture to improve sensitivity to long-range
context in fMRI scans that last several minutes [52].

https://github.com/icon-lab/DreaMR
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Fig. 1: DreaMR is a counterfactual explanation method for deep fMRI classifiers. a) To capture the distribution of fMRI data, DreaMR trains a class-agnostic
FMD prior that splits the diffusion process into F uniform fractions with dedicated networks D

[f ]
θ , as described in Eq. 6. Following training, the FMD prior

is subjected to multi-phase distillation to attain D
[f ]
θP

that allow fast sampling, as described in Eq. 7. b) DreaMR is devised to explain the decisions of a deep
classifier that predicts cognition-related variables from a subject’s fMRI scan. c) Given an input fMRI sample x0∼p(x) mapped onto cognitive state y0 by the
classifier, DreaMR first samples a noise-added version x̄∆T via forward diffusion and then generates x̄0∼p(x) with minimal alterations from x0 via reverse
diffusion. Generation is guided with the conditional score of the classifier to flip the decision to ȳ0 ̸= y0. Starting at fraction fc = ⌈∆T (F/T )⌉, classifier
guidance computed from a denoised estimate of the counterfactual sample (˜̄x) is injected at each diffusion step (orange boxes), as described in Alg. 1.

Few recent imaging studies have also considered diffusion-
based counterfactual generation to map lesions in anatomical
scans by synthesizing pseudo-healthy medical images [24]–
[26]. Commonly, these studies propose conventional diffusion
priors based on UNet. Instead, DreaMR leverages the novel
FMD prior for higher efficiency and a transformer architecture
to capture long-range context. Note that [24], [25] train class-
conditional priors on normals and patients, and [26] trains a
class-specific prior on normals. When adopted for counterfac-
tual explanation, such class-informed priors must use matching
class definitions to the classifier, so they require retraining for
each classification task. In contrast, DreaMR employs a class-
agnostic diffusion prior that can be utilized to explain models
for different tasks without retraining.

III. THEORY

A. Conventional Diffusion Priors

Diffusion priors use a gradual process to transform between
a data sample x0 and a random noise sample xT in T steps.
In the forward direction, Gaussian noise is added to obtain a
noisier sample xt at step t, with forward transition probability:

q (xt|xt−1) = N
(
xt; (αt/αt−1)xt−1, σ

2
t|t−1I

)
, (1)

where N is a Gaussian distribution, I is the identity covariance
matrix, and α, σ2 are scaling and noise variance parameters

where α2
t + σ2

t = 1 [22]. In the reverse direction, a network
parametrization Dθ is used to restore original data from noisy
samples, i.e., x̂0 = Dθ(xt, t). The prior can be trained by
minimizing a variational bound on likelihood [23]:
Et∼U [1,T ],x0∼p(x),xt∼q(xt|x0)

[
ω (λt) ∥Dθ(xt, t)− x0∥22

]
, (2)

where E is expectation, U is a uniform distribution, q(xt|x0) =
N
(
xt;αtx0, σ

2
t I
)
, ω (λt) is a weighting function with λt =

log(α2
t /σ

2
t ) denoting signal-to-noise ratio.

Once trained, the diffusion prior can generate a synthetic
data sample by progressively denoising a random noise sample
across T steps. The reverse transition probability for the
denoising steps can be expressed as [22]:

q (xt−1|xt, x̂0) =

N
(
αt−1x̂0 +

√
1− α2

t−1 − β2
t .

xt − αtx̂0

σt
, β2

t I

)
,(3)

where βt = σt−1

σt αt−1

√
(α2

t−1 − α2
t ) controls the stochasticity

of generated samples. The original diffusion prior requires
T≈1000 forward passes through the network for generation.
To lower sampling time, a common solution is interleaved
sampling with step size k, xt−k∼q(xt−k|xt, x̂0), while βt = 0
for deterministic generation (i.e., DDIM) [28]. Yet, interleaved
sampling can still require few hundred steps for generation and
it typically suffers from reduced sample quality [50].
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B. DreaMR

DreaMR is a novel explanation method for deep fMRI
models based on counterfactual generation. Assume that a
downstream classifier c(x)=y maps an input fMRI sample
x0∼p(x) onto a class label y0 ∈ Y for cognition-related
variable, according to posterior probability pc(y|x). Here, we
take that x0 ∈ RR×W denotes the BOLD responses recorded
in the given fMRI scan, where R is the number of brain
regions and W is the number of time frames. Counterfactual
generation aims to obtain plausible samples x̄0∼p(x) with
minimal alterations from x0, such that the classifier decision
is flipped c(x̄0) = ȳ0 where ȳ0 ̸= y0, ȳ0 ∈ Y . Afterwards, the
differences between the original and counterfactual samples
(x0–x̄0) can be inspected to infer the input features that are
critical in distinguishing between labels y0 and ȳ0.

Counterfactual generation inherently requires alteration of
response values within the input fMRI sample. To do this
based on a trained diffusion prior, a noisy fMRI sample x̄∆T

is first obtained by adding a moderate level of white Gaussian
noise onto the original sample x0 [49]:

q (x̄∆T |x0) = N
(
x̄∆T ; (α∆T /α0)x0, σ

2
∆T |0I

)
, (4)

where the time step ∆T < T is a hyperparameter. Starting
reverse diffusion at ∆T , response values in the noisy fMRI
sample can then be altered according to the reverse transition
probabilities in Eq. 3, so that the resultant counterfactual
sample remains proximal to x0. Yet, to ensure that the counter-
factual sample is able to flip the classifier decision, classifier
guidance is also injected [50]:
q(x̄t−1|x̄t, ˆ̄x0) = N

(
ˆ̄x0 + s β2

t ∇x̄t
log pc(ȳ0|x̄t), β

2
t

)
, (5)

where ∇x̄t
is gradient with respect to x̄t, s is a scaling pa-

rameter that controls the relative weight of classifier guidance.
Previous studies on counterfactual generation have adopted

interleaved sampling with conventional diffusion priors,
which still takes few hundred sampling steps [28]. Fur-
thermore, counterfactual generation requires knowledge of
∇x̄t

log pc(ȳ|x̄t) that is unknown a priori as the classifier is
trained on original samples without added noise. To improve
inference efficiency, DreaMR leverages a novel FMD prior for
counterfactual generation in few steps without compromising
sample quality (Fig. 1). Meanwhile, to avoid the need for clas-
sifier retraining on noisy samples, DreaMR computes classifier
gradients given denoised sample estimates as a surrogate for
gradients on noisy samples. Working principles of the FMD
prior, classifier guidance and the counterfactual generation
algorithm are detailed in the rest of this section.

B.1 Fractional multi-phase-distilled diffusion prior: During
counterfactual generation with diffusion priors, providing
guidance via classifier gradients at each diffusion step can
cause significant computational burden for inference [24].
A mainstream approach to improve inference efficiency is
distillation for post-hoc reduction of the number of diffusion
steps [49], [53]. However, conventional distillation procedures
on common diffusion priors can result in undesirable losses
in sample quality [54], [55]. Here, we argue that two main
contributors to these losses are the use of a single denoising
network for the entire diffusion process and the use of a

single-phase distillation. Thus, to enable efficient inference
without compromising sample quality, we propose a novel
FMD prior that splits the diffusion process into F uniform
fractions with dedicated denoising networks, and performs
multi-phase distillation separately in each fraction (Fig. 2).

Characteristics of the denoising task can show notable varia-
tions within a diffusion process due to varying noise levels and
feature details across diffusion steps [56]. In turn, poor adapta-
tion to these characteristics can induce significant performance
losses in distilled diffusion priors. Several recent studies have
considered to employ multiple denoising networks on separate
time fractions to improve adaptation in undistilled diffusion
priors [56], but these studies did not examine the influence
of fractional diffusion on distilled priors. While other studies
have considered progressive distillation over multiple stages
to alleviate losses in distilled priors [54], they employed a
common denoising network across the entire diffusion process
that can compromise sample quality. Unlike these recent
efforts, here we introduce FMD as the first diffusion prior
that synergistically combines fractional diffusion with fraction-
specific multi-phase distillation to simultaneously maintain
high quality and efficiency in sample generation.

For fractional diffusion, FMD employs a dedicated denois-
ing network x̂0 = D

[f ]
θ (xt, t) in each fraction (Fig. 2). The f th

fraction covers T/F consecutive steps from ts(f) = T (f)/F
to te(f) = T (f−1)/F+1. The resultant FMD prior is trained
via the following objective:

F∑
f=1

Et∼U [ts(f),te(f)]

[
∥D[f ]

θ (xt, t)− x0∥22
]
, (6)

where ω and expectation over x0, xt are omitted for brevity.
For multi-phase distillation, FMD performs gradual knowl-

edge transfer from the original teacher network D
[f ]
θ0
(xt, t)

onto a student network D
[f ]
θP

over P phases. In the pth phase,
D

[f ]
θp−1

(xt, t) is the teacher, D[f ]
θp
(xt, t) is the student, and the

diffusion step size is increased by a factor of 2 as follows:

Et∼U({ts(f):T/(kdF ):te(f)})

[
∥D[f ]

θp
(xt, t)− x̃0∥22

]
, (7)

where kd = 2p is the diffusion step size of the student.
Adopting interleaved sampling, the reference sample x̃0 is
derived via sampling based on the teacher D[f ]

θp−1
(xt, t):

x̃0 =
x̃t−2ko

− (σt−2ko
/σt)xt

αt−2ko
− (σt−2ko

/σt)αt
, (8)

where ko = 2(p−1) is the diffusion step size of the teacher. At
the end of the distillation procedure, the number of steps for
a given fraction is reduced from T/F to T/(2PF ). Although
this multi-phase distillation involves additional computations
over a single-phase distillation during the training stage,
progressively lowering the number of diffusion steps helps
mitigate losses in sample quality in the distilled diffusion prior.

B.2 Classifier guidance: A counterfactual sample that flips
the classifier decision can be drawn if the joint score function
∇xt log p(xt, y) for noisy samples and predicted class labels is
known. Since p(xt, y) = p(xt)pc(y|xt) based on Bayes’ rule,
the joint score is given as:

∇xt
log p(xt, y) = ∇xt

log p(xt) +∇xt
log pc(y|xt). (9)



BEDEL et al.: DIFFUSION-DRIVEN COUNTERFACTUAL EXPLANATION FOR FMRI 5

Fig. 2: DreaMR leverages a novel FMD prior for ef-
ficient sample generation without compromising sample
quality, and to enable effective intermittent control over
the generation process. The FMD prior splits the overall
diffusion process into F fractions, where the f th fraction
covers T/F consecutive steps from ts(f) = T (f)/F
to te(f) = T (f − 1)/F + 1. Since the characteristics
of the denoising task can vary notably across fractions,
a dedicated denoising network D

[f ]
θP

is employed in each
fraction to improve sample fidelity. To enhance sensitivity
to long-range temporal context in fMRI scans, the network
is built on an efficient transformer architecture that uses
fused window attention mechanisms [36]. To improve sam-
pling efficiency, multi-phase distillation is performed over
P phases in each fraction (Eq. 7). In the pth distillation
phase, the diffusion step size is doubled to shorten sampling
time by a factor of 2. At the end of multi-phase distillation,
the number of sampling steps that must be executed for a
given fraction is reduced from T/F to T/(2PF ). Note
that the novel combination of diffusion fractions and multi-
phase distillation in FMD serves to mitigate losses in
sample quality typically encountered with distillation of
conventional diffusion priors.

The first term denotes the marginal score function for noisy
samples, which can be derived as follows [22]:

p(xt) =
1

σt

√
2π

exp

(
−1

2

(
xt − αtx̂0

σt

)2
)
, (10)

∇xt log p(xt) = −xt − αtx̂0

σ2
t

. (11)

Meanwhile, the second term denotes the conditional score
function for predicted labels given noisy samples. Note that
the originally trained classifier does not capture pc(y|xt), but
instead pc(y|x0). The classifier could be retrained on a set
of noisy samples generated by the diffusion prior. However,
this brings in additional computational burden, and learning
of pc(y|xt) on samples with heavy noise might be difficult.

To avoid limitations related to classifier retraining, here
we derive a surrogate based on pc(y|x0) to compute the
conditional score function. Following the chain rule:

∇xt
log pc(y|xt) = ∇x̃0

log pc(y|xt) · ∇xt
x̃0, (12)

where x̃0 is obtained via sampling across the diffusion process.
Based on forward diffusion, xt and x0 are related as:

xt = αtx0 + σtϵ, s.t. ϵ ∼ N (0, I) . (13)
Assuming that x̃0 ≃ x0, ∇xt

x̃0 = 1/αt. In conventional
diffusion priors with stochastic sampling (i.e., βt ̸= 0), xt

and x̃0 can be related through a one-to-many mapping. Yet,
since DreaMR adopts deterministic sampling with βt = 0, a
unique x̃0 is obtained given xt. As such, pc(y|xt) = pc(y|x̃0),
and the conditional score can be expressed as:

∇xt
log pc(y|xt) =

1

αt
∇x̃0 log pc(y|x̃0). (14)

Since pc(y|x̃0)≃ pc(y|x0) for a reasonably well-trained diffu-
sion prior, the posterior distribution of the originally trained
classifier can be used to provide guidance without retraining.

B.3 Counterfactual generation: The counterfactual genera-
tion algorithm for DreaMR is outlined in Alg. 1. Given an
original fMRI sample x0, a noisy sample x̄∆T is first obtained
by adding Gaussian noise via forward diffusion as described
in Eq. 13. DreaMR then performs reverse diffusion sampling
via the trained FMD prior to alter the response values in x̄∆T ,

without diverging significantly from x0. Note that time step
∆T corresponds to fraction fc = ⌈∆T (F/T )⌉, so reverse
diffusion is initiated at the fcth fraction. To ensure that the
eventual counterfactual sample is able to flip the classifier
decision to ȳ, gradient of the posterior distribution of the
classifier is also employed. For the f th fraction, the interleaved
sampling equation based on the FMD prior injected with
classifier guidance can be described as:

x̄t−k = αt−k ˆ̄x0 + σt−k
x̄t − αt ˆ̄x0

σt
+

s
σ2
t

α2
t

(αt−k − αt
σt−k

σt
)∇˜̄x0

log pc(ȳ|˜̄x0), (15)

where k is step size, ˆ̄x0 = D
[f ]
θP

(x̄t, t), and s is a scaling
constant to control the strength of guidance. In Eq. 15,
the conditional score from the classifier is computed using
˜̄x0, which is Langevin sampled across the diffusion process,
instead of ˆ̄x0, as this was observed to improve the quality
of guidance. The counterfactual sample x̄0 is obtained after
taking ∆T/k reverse diffusion steps.

IV. METHODS

A. Experimental Procedures
Demonstrations were performed on fMRI scans from HCP-

Rest, HCP-Task [57] and ID1000 datasets [58]. After exclusion
of incomplete scans (<1200s), HCP-Rest contained 1093
resting-state fMRI samples (594 female, 499 male). HCP-
Task contained 7450 task-based fMRI samples (594 female,
501 male) where each subject performed 7 different tasks
(i.e., emotion, relational, gambling, language, social, motor,
working memory). ID1000 contained 881 movie-watching
fMRI samples (458 female, 423 male).

As downloaded from the public datasets, several prepro-
cessing steps had already been performed on fMRI scans. For
HCP-Rest and HCP-Task, motion correction, distortion correc-
tion, registration onto the MNI template, bias field correction,
and brain extraction had been performed [59]. For ID1000,
motion correction, distortion correction, registration onto the
ICBM template, brain extraction, and CompCorr denoising
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Algorithm 1: Counterfactual generation with DreaMR
Input:
x0 ∼ p(x): Original fMRI sample
pc(y|x): Posterior probability of the classifier
y0 ∈ Y : Classifier-predicted label for x0
ȳ0: Target label for counterfactual generation
∆T : Initial diffusion step for counterfactual generation
{D[1]

θP
, ...,D

[F ]
θP
}: Distilled networks across fractions

k = 2P : Step size after P distillation phases
Output:
x̄0: Counterfactual sample

x̄∆T ← α∆T x0 + σ∆T ϵ; ▷ generate noisy sample
for fo in range(fc, 0, -1) do

▷ sample across fractions to find ˜̄x0
for ti in range(ts(fo), −1, −k) do

fi ← ceil(tiF/T );
ˆ̄x0 ← D

[fi]
θP

(x̄ti , t);

x̄ti−k ← αti−k ˆ̄x0 + σti−k
x̄ti−αti

ˆ̄x0
σti

;
end
˜̄x0 ← x̄0; G← ∇˜̄x0

log pc(ȳ | ˜̄x0); ▷ gradient
▷ sample within fraction to find x̄te(f)
for to in range(ts(fo), te(fo)− 1, −k) do

ˆ̄x0 ← D
[fo]
θP

(x̄to , t);

γ ← s
σ2
to

α2
to

(αto−k − αto
σto−k
σto

); ▷ scale

x̄to−k ← αto−k ˆ̄x0 + σto−k
x̄to−αto

ˆ̄x0
σto

+ γG;
end

end

had been performed [58]. In addition to these steps, we created
nuisance variables for motion and physiological noise due to
respiratory and cardiac traces across each fMRI run [60]. To
control for confounds, these nuisance variables were regressed
out from voxel-wise fMRI time series, and the resultant time
series were z-scored across time for normalization.

Regions of interest (ROI) in the brain were defined based
on the Schaefer atlas (R=400 regions) [61], the MMP atlas
(R=360 regions) [62], or an aggregate atlas that pooled MMP
with 20 cerebellar and 24 subcortical ROIs from the Talairach
atlas (R=404) [63]. Responses within each ROI were obtained
by averaging fMRI signals across member voxels according to
the ROI definition. As such, each fMRI scan was represented
via a data matrix of R × W , with the number of time
frames W=1200 for HCP-Rest, W=176-405 for HCP-Task
depending on cognitive task, and W=290 for ID1000. To
cope with varying scan durations, a sliding window approach
was adopted across the time dimension of fMRI scans [36].
Counterfactual methods were devised to process individual
strided windows across the scans, and window-specific outputs
were merged by averaging overlapping time frames between
consecutive windows. The window size was 600 for HCP-
Rest, 128 for HCP-Task and ID1000, and the stride was taken
as half the window size [36].

Experiments were conducted on single NVIDIA RTX 3090
GPUs using the PyTorch framework. Modeling was performed
via a five-fold cross-validation procedure. In each fold, data
were randomly split into training (80%), validation (10%) and
test sets (10%) without any subject overlap among the three

sets. Data splits were devised to ensure that there was no
subject overlap among the validation sets, or among the test
sets for separate folds. For fair comparison, identical data splits
were used for all competing methods. Model performances
were evaluated on the test set for each cross-validation fold,
and reported as mean±std across five folds.

A transformer-based downstream fMRI classifier was
trained using cross-entropy loss [36]. For explanation methods,
priors were trained using their originally proposed losses, and
hyperparameters including number of epochs, learning rate and
batch size were selected to minimize validation loss [64]. For
each method, a common set of hyperparameters yielding near-
optimal performance was used across datasets.

B. Competing Methods
DreaMR was compared against state-of-the-art counterfac-

tual methods based on VAE, GAN, and diffusion priors.
B.1 DreaMR: DreaMR was implemented based on the trans-

former architecture in [36], adapted for diffusion modeling
by incorporating time encoding via adaptive normalization
layers [65]. Inspired by efficient transformer methods based
on temporal windowing [66], [67], the transformer processed
time series across a hierarchically growing set of time windows
to maintain linear complexity. The FMD prior used T=1024
steps, F=4 fractions, P=7 distillation phases, k=128 final step
size. Cross-validated hyperparameters were E=100 epochs,
η=2x10−4 learning rate, B=8 batch size, s=(8,16,32) for HCP-
Task, ID1000, HCP-Rest respectively.

B.2 DiME: A diffusion-based method was trained to gen-
erate fMRI samples; counterfactuals were generated by inter-
leaved sampling guided by downstream classification loss and
perceptual loss between original and resampled fMRI scans
[51]. E=200, η=5x10−5, B=8 were cross-validated.

B.3 DiffSCM: A diffusion-based method was trained to
generate fMRI samples; counterfactuals were generated by
interleaved sampling guided by downstream classification loss
[50]. E=200, η=10−4, B=8 were cross-validated.

B.4 CAG: A GAN-based method was trained to translate
between classes given cross-entropy loss from the downstream
classifier; counterfactuals were generated via translation [14].
E=200, η=5x10−5, B=32 were cross-validated.

B.5 CheXplain: A GAN-based method was trained to gen-
erate samples given predictions by the downstream classifier;
counterfactuals were generated by modifying the style latents
[68]. E=200, η=2x10−4, B=16 were cross-validated.

B.6 DiVE: A VAE-based method was trained via a vari-
ational objective to generate fMRI samples; counterfactuals
were generated by modifying encoded latents of the autoen-
coder [15]. E=500, η=4x10−4, B=16 were cross-validated.

B.7 LatentShift: An autoencoder-based method was consid-
ered that modified latent representations of an input fMRI
sample to emphasize features that contribute to the classifier
decision [20]. E=100, η=4x10−4, B=16 were cross-validated.

B.8 D’artagnan: A GAN-based method was trained to
translate between classes given cross-entropy loss from the
downstream classifier and distance between the original and
translated fMRI scans; counterfactuals were generated via
translation [47]. E=100, η=1x10−4, B=8 were cross-validated.
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Fig. 3: Spatiotemporal explanation maps from competing methods for a representative fMRI scan in HCP-Task based on the Schaefer atlas. The original
input fMRI sample for the motor task is shown on the left. The global average of fMRI samples across subjects for the motor task is shown on the right,
where colored boxes are used to depict the time slots within fMRI scans during which specific motor tasks were performed (left foot: purple, left hand:
green, . . . , tongue: cyan). For attribution methods, explanation maps were taken as the gradient of the classifier loss function with respect to input features.
For perturbation methods, explanation maps were obtained by masking out local patches in fMRI samples. For counterfactual methods, counterfactuals were
generated separately to flip the class label from the motor onto each of six remaining cognitive tasks, and explanation maps were taken as the average
difference between the original and counterfactual samples.

TABLE I: Fidelity of spatiotemporal features of counterfactual samples was measured via proximity (Prox.), sparsity (Spar.), and FID metrics. Results listed
for HCP-Rest, HCP-Task and ID1000 datasets based on the Schaefer atlas, as mean±std across five cross-validation folds. Boldface marks the top-performing
method in each dataset.

HCP-Rest HCP-Task ID1000

Prox. ↓ Spar. ↓ FID ↓ Prox. ↓ Spar. ↓ FID ↓ Prox. ↓ Spar. ↓ FID ↓
DreaMR 42.0±0.5 12.0±0.2 21.3±0.4 49.7±0.5 15.2±0.2 5.0±0.4 50.1±0.4 15.6±0.2 11.5±0.3
DiME 64.8±1.3 20.4±0.5 25.7±1.6 65.5±0.6 20.8±0.2 12.8±0.9 89.2±0.7 28.7±0.2 16.8±0.3

DiffSCM 64.2±4.9 14.4±0.9 40.9±2.3 66.6±5.7 14.5±1.3 17.0±1.1 74.8±11.3 14.4±1.0 25.4±6.8

CAG 152.6±46.5 39.1±6.0 21.2±5.4 185.0±41.2 43.9±5.7 9.8±1.8 189.0±5.2 45.7±0.7 13.5±1.5

CheXplain 143.2±5.7 39.5±0.9 208.3±54.8 162.6±7.7 42.5±1.1 72.3±11.5 161.5±10.0 42.5±1.3 91.2±21.7

DiVE 101.6±1.6 30.9±0.4 139.3±4.5 107.7±0.8 32.6±0.2 124.6±3.7 159.1±0.7 42.1±0.1 262.8±7.9

LatentShift 49.5±1.0 14.6±0.3 69.1±1.0 87.1±18.8 25.2±3.7 170.7±3.0 118.8±25.2 33.9±5.1 172.8±3.7

D’artagnan 123.5±30.8 34.5±4.9 122.6±24.8 80.3±6.9 25.0±1.9 61.7±13.0 126.7±26.0 36.3±4.3 77.6±26.9

DVCE 67.3±5.5 20.6±1.2 26.2±1.1 58.0±0.5 18.2±0.2 20.6±1.7 68.4±0.5 22.3±0.2 20.5±0.9

TABLE II: Fidelity of spatiotemporal features of counterfactual samples for HCP-Rest, HCP-Task and ID1000 based on the MMP atlas.

HCP-Rest HCP-Task ID1000

Prox. ↓ Spar. ↓ FID ↓ Prox. ↓ Spar. ↓ FID ↓ Prox. ↓ Spar. ↓ FID ↓
DreaMR 38.4±0.5 10.5±0.5 20.0±0.6 49.4±0.6 15.0±0.2 4.9±0.4 51.4±0.6 16.1±0.2 12.9±0.5

DiME 54.6±1.6 16.7±0.6 29.5±1.9 62.6±1.4 19.6±0.5 9.7±1.9 88.3±0.5 28.4±0.2 16.8±0.4

DiffSCM 50.2±2.7 10.8±0.6 39.5±2.9 52.5±3.0 11.0±0.5 13.9±1.4 74.7±8.1 13.7±1.3 29.3±3.6

CAG 181.9±49.0 42.6±6.3 19.0±1.3 184.4±53.6 43.3±7.4 9.6±0.5 195.6±15.7 45.9±1.9 11.0±0.3
CheXplain 158.5±27.0 41.3±3.6 242.4±51.9 174.3±12.5 43.8±1.7 67.0±15.3 181.1±16.0 45.1±1.9 75.0±22.8

DiVE 99.0±4.9 30.2±1.1 129.8±8.9 97.8±0.6 30.3±0.2 112.8±2.5 150.2±0.4 41.1±0.1 139.1±8.4

LatentShift 40.9±0.6 11.3±0.2 41.8±1.1 91.7±21.5 26.5±3.4 98.7±23.4 100.2±10.0 30.3±2.4 108.6±5.0

D’artagnan 69.8±2.6 21.9±0.9 65.2±16.8 56.9±18.0 17.1±5.8 27.0±5.7 93.8±31.4 28.4±6.7 39.1±18.2

DVCE 46.6±1.5 13.7±0.6 30.7±2.2 54.8±0.6 17.0±0.2 16.3±2.4 67.0±0.4 21.9±0.2 19.9±0.8

B.9 DVCE: A diffusion-based method was trained to gen-
erate fMRI samples; counterfactuals were obtained by inter-
leaved sampling guided by downstream classification loss [49].
E=100, η=5x10−5, B=8 were cross-validated.

C. Performance Evaluation
We quantified proximity, sparsity and Fréchet Inception

Distance (FID) metrics to assess performance of competing
counterfactual methods [49]. Proximity was taken as the
normalized ℓ2 distance between original and counterfactual
samples; sparsity was taken as the proportion of features

whose absolute difference between original and counterfactual
samples exceeded the standard deviation across features in
the original sample. Low proximity and sparsity indicate that
feature changes between samples are minimal, so the resul-
tant interpretations are specific. Meanwhile, low FID scores
suggest that counterfactual samples are drawn from a similar
distribution to that of original samples, so the interpretations
are plausible. Significance of differences between methods
were assessed via non-parametric Wilcoxon signed-rank tests.
FID produced an aggregate measure across the test set so it
was not included in significance assessments.
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TABLE III: Fidelity of functional connectivity (FC) features of counterfactual samples for HCP-Rest, HCP-Task and ID1000 based on the Schaefer atlas.

HCP-Rest HCP-Task ID1000

Prox. ↓ Spar. ↓ FID ↓ Prox. ↓ Spar. ↓ FID ↓ Prox. ↓ Spar. ↓ FID ↓
DreaMR 0.6±0.0 3.5±0.5 41.4±2.6 0.9±0.0 5.5±0.4 11.3±1.0 0.8±0.0 2.8±0.1 33.0±1.3
DiME 0.9±0.1 7.8±1.1 48.1±3.2 1.8±0.1 17.5±1.2 26.2±1.4 1.6±0.0 10.2±0.1 54.3±2.3

DiffSCM 2.9±0.4 26.8±2.3 120.6±4.9 4.7±0.3 30.4±2.0 64.2±4.6 2.0±0.3 14.9±1.4 76.7±4.1

CAG 3.5±0.3 35.7±2.0 53.5±8.7 3.9±0.2 33.4±1.6 21.1±7.5 4.0±0.1 28.8±0.5 38.4±6.7

CheXplain 13.9±2.2 65.7±3.8 228.2±35.0 5.0±0.3 39.3±1.7 101.1±14.7 5.7±1.0 38.0±1.7 129.4±19.0

DiVE 29.8±0.2 96.4±0.2 230.4±5.0 26.0±0.7 91.3±0.7 176.8±2.6 13.9±0.2 62.9±1.2 250.0±14.7

LatentShift 8.0±0.6 63.2±3.0 111.8±4.3 11.2±2.2 64.6±7.4 117.7±11.2 8.9±0.2 52.0±1.1 211.9±4.2

D’artagnan 24.2±3.6 80.0±3.1 266.0±15.9 8.8±1.2 56.6±2.5 108.4±26.4 14.2±2.4 61.3±4.2 248.1±8.3

DVCE 1.3±0.2 11.9±2.1 46.7±3.6 1.3±0.2 11.9±2.1 46.7±3.6 1.6±0.1 10.1±0.5 67.1±4.6

TABLE IV: Fidelity of functional connectivity (FC) features of counterfactual samples for HCP-Rest, HCP-Task and ID1000 based on the MMP atlas.

HCP-Rest HCP-Task ID1000

Prox. ↓ Spar. ↓ FID ↓ Prox. ↓ Spar. ↓ FID ↓ Prox. ↓ Spar. ↓ FID ↓
DreaMR 0.7±0.1 3.5±0.6 26.9±1.5 1.0±0.0 5.0±0.4 6.6±0.5 0.9±0.0 1.6±0.0 24.0±0.9
DiME 0.9±0.1 6.7±1.6 39.5±1.7 1.8±0.2 13.6±2.4 15.8±1.7 1.6±0.0 6.3±0.2 46.7±0.8

DiffSCM 3.0±0.2 25.1±1.2 99.2±4.7 3.9±0.2 23.2±1.0 36.6±1.0 2.5±0.3 14.7±1.2 79.7±7.0

CAG 3.4±1.6 29.3±10.4 30.8±2.4 3.2±0.3 25.2±2.2 20.6±2.3 3.7±0.1 20.8±0.2 32.7±3.3

CheXplain 9.8±1.1 58.0±2.8 193.6±17.6 5.5±0.5 38.3±2.6 90.3±0.4 5.3±0.6 30.1±2.4 156.5±22.3

DiVE 25.3±1.1 93.7±1.1 241.5±3.2 23.6±0.5 89.9±0.6 180.2±5.1 16.5±0.4 63.2±0.9 264.7±1.7

LatentShift 6.5±0.4 57.2±3.0 136.9±5.9 10.7±3.8 60.0±14.0 115.0±50.4 8.1±0.3 43.5±1.9 211.3±6.2

D’artagnan 12.8±2.8 69.8±6.7 251.5±15.7 4.6±1.3 35.5±6.7 93.8±36.0 9.4±2.9 46.2±7.9 201.4±29.9

DVCE 1.5±0.2 15.0±3.7 43.9±2.9 2.5±0.3 21.6±3.1 22.5±2.9 1.5±0.1 5.8±0.2 44.2±2.2

TABLE V: Fidelity of spatiotemporal and FC features of counterfactual
samples for the HCP-Task dataset. Results based on an aggregate atlas
combining ROIs from the MMP and Talairach atlases.

Spatiotemporal FC

Prox. ↓ Spar. ↓ FID ↓ Prox. ↓ Spar. ↓ FID ↓
DreaMR 56.5±0.4 17.6±0.2 4.9±0.1 1.0±0.0 5.1±0.2 6.1±0.4
DiME 69.4±0.7 21.7±0.2 9.6±1.3 1.5±0.1 10.5±1.1 14.1±1.1

DiffSCM 76.0±9.0 14.6±0.9 21.5±1.5 5.1±0.5 27.0±1.7 55.6±7.5

CAG 155.0±41.9 39.6±5.4 13.5±0.9 2.7±0.2 20.8±1.2 22.5±3.6

CheXplain 202.6±8.6 47.2±8.6 98.2±4.0 4.2±0.1 31.1±0.6 92.8±10.2

DiVE 107.1±0.9 32.7±0.2 129.1±5.9 23.6±1.2 88.2±1.3 182.4±6.0

LatentShift 122.2±55.7 31.3±9.3 123.6±14.5 11.5±2.2 58.5±7.8 141.4±15.1

D’artagnan 64.3±6.9 19.9±2.6 29.6±6.0 5.4±0.3 41.7±1.6 81.5±13.2

DVCE 57.9±0.8 17.8±0.3 19.9±2.1 2.4±0.2 18.6±2.4 26.1±3.8

V. RESULTS

A. Fidelity of Counterfactual fMRI Samples

We first demonstrated DreaMR in explanation of down-
stream transformer-based classifiers for sex on HCP-Rest
and ID1000, and for cognitive task on HCP-Task. Separate
analyses were conducted using the Schaefer and MMP at-
lases to rule out potential concerns regarding bias in ROI
definitions. Fig. 3 depicts representative explanation maps for
spatiotemporal features of an fMRI sample from the motor
task, produced by competing counterfactual as well as attri-
bution [43] and perturbation [69], [70] methods. Attribution
methods tend to yield broad-spread maps with poor specificity
for local features in the fMRI sample. Perturbation methods
can improve capture for some local features, but their results
are inconsistent across the fMRI sample given limited sensi-
tivity for global context. Meanwhile, counterfactual methods
based on VAE, GAN priors tend to emphasize non-salient
features for the motor task, suggesting suboptimal fidelity
in counterfactual samples. In contrast to competing methods,
DreaMR generates an explanation map that is more closely
aligned with prominent spatiotemporal features in the average

sample for the motor task, without signs of over-broadening
or incoherence. These qualitative assessments suggest that
DreaMR can offer high fidelity in counterfactual explanation.

To provide specific explanations, counterfactual generation
aims to identify minimal changes in the features of an original
fMRI sample that are sufficient to flip the respective classifier
decision. Thus, under the condition of successful decision
flipping, it is desirable that counterfactual and original samples
follow similar data distributions. Based on this notion, the
fidelity of counterfactual samples was quantitatively evaluated
via proximity, sparsity and FID metrics (see Section IV-C for
definitions), which reflect the similarity between the coun-
terfactual and original data distributions. Proximity, sparsity
and FID values for spatiotemporal features of counterfactual
samples are listed in Table I based on the Schaefer atlas,
and in Table II based on the MMP atlas. Note that, in
these quantitative evaluations, each competing method yielded
successful counterfactuals that were able to flip the classifier
decisions for all original samples in the test sets. In general,
the relative performance levels of competing methods show
similar trends for analyses based on Schaefer versus MMP at-
lases, suggesting that our results are not unduly biased by ROI
definitions. Overall, DreaMR achieves the lowest proximity,
sparsity and FID across datasets and atlases (p<0.05), except
for DiffSCM that yields moderately lower sparsity on HCP-
Task and ID1000 datasets, and CAG that yields moderately
lower FID on HCP-Rest and on ID1000 with the MMP atlas.
Note that, in these exception cases, DreaMR still performs
competitively with DiffSCM or CAG, and yields the second-
best performance among competing methods. On average
across atlases and cross-validation folds, DreaMR outperforms
competing methods in proximity by 51.6, sparsity by 13.9, FID
by 57.6 on HCP-Rest; proximity by 49.7, sparsity by 11.9,
FID by 47.8 on HCP-Task; and proximity by 70.4, sparsity
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by 16.7, FID by 57.8 on ID1000. These results indicate
that DreaMR generates high-fidelity counterfactuals minimally
different from the original fMRI samples and closely aligned
with the original data distribution in terms of spatiotemporal
features.

In the neuroimaging literature, another pervasively analyzed
attribute of fMRI data are functional connectivity (FC) features
that are commonly associated with cognition-related variables
[3]. Thus, we also examined the fidelity of FC features derived
from counterfactual fMRI samples. To do this, a counterfactual
sample was generated via competing methods on each original
fMRI sample. For both counterfactual and original samples,
the FC feature between a given pair of brain regions was
taken as Pearson’s correlation coefficient between respective
fMRI time courses [8]. Note that if a particular method
yields counterfactual samples that are more similar to the
original fMRI samples, then the FC features derived from
those counterfactuals are likely to be more similar to the FC
features of original samples. Thus, in terms of relative per-
formance among competing methods, results for FC features
are expected to follow partly similar patterns with those for
spatiotemporal features. Proximity, sparsity and FID values
for FC features are listed in Table III based on the Schaefer
atlas, and in Table IV based on the MMP atlas. The relative
performance levels of competing methods are generally similar
based on Schaefer versus MMP atlases, corroborating that
our results are not unduly biased by ROI definitions. Overall,
DreaMR achieves the top performance in all datasets and
atlases (p<0.05). On average across atlases and folds, DreaMR
outperforms competing methods in proximity by 8.6, sparsity
by 42.9, FID by 99.7 on HCP-Rest; proximity by 6.5, sparsity
by 35.5, FID by 68.4 on HCP-Task; and proximity by 5.4,
sparsity by 29.6, FID by 103.6 on ID1000. These results in-
dicate that DreaMR generates reliable counterfactual samples
whose FC features are closely aligned to the distribution of FC
features for original fMRI samples, similar to the results on
spatiotemporal features. Note, however, that FC features reflect
time-aggregated connectivity measures that typically follow
a lower dimensional distribution compared to spatiotemporal
features, and the distributional attributes of the two feature sets
show notable differences [3]. As such, a simple comparison
of fidelity metrics for FC versus spatiotemporal features might
yield misleading impressions regarding relative success in
counterfactual explanation, and further work is warranted to
elucidate this challenging question.

Certain cognitive tasks might involve brain regions not
only within but also outside the cerebral cortex, for which
the Schaefer and MMP atlases provide a tessellation [71].
For instance, it has been suggested that motor and working
memory tasks evoke responses in cerebellar regions, whereas
gambling tasks can evoke responses in subcortical regions
[57]. To provide a broader assessment across the brain, we
conducted a separate analysis based on an aggregate atlas
that combined ROI definitions for cortical regions from the
MMP atlas with those for cerebellar and subcortical regions
from the Talairach atlas. A downstream transformer-based
classifier was first trained to detect cognitive tasks on the HCP-
Task dataset, and competing methods were then employed for

TABLE VI: Detection performance of a linear classifier trained using coun-
terfactual samples was measured via accuracy (Acc.) and F1 metrics. Results
listed for HCP-Rest, HCP-Task and ID1000 based on the Schaefer atlas as
mean±std across five cross-validation folds.

HCP-Rest HCP-Task ID1000

Acc. ↑ F1 ↑ Acc. ↑ F1 ↑ Acc. ↑ F1 ↑
DreaMR 78.0±2.1 80.0±2.3 92.7±3.0 92.8±3.0 78.0±2.4 75.8±5.2
DiME 47.8±2.7 63.2±1.6 84.6±2.5 83.8±2.9 68.9±6.4 74.9±4.3

DiffSCM 53.0±1.7 63.0±1.2 88.8±4.4 89.2±3.9 52.6±3.5 53.1±1.1

CAG 62.8±11.6 70.8±5.1 69.0±5.7 69.1±6.4 57.50±8.4 69.8±5.0

CheXplain 52.6±2.0 64.2±0.4 19.6±5.9 14.1±4.7 53.0±3.7 67.1±1.8

DiVE 64.9±10.6 71.1±5.3 64.5±10.9 63.1±11.7 66.1±9.1 74.2±4.8

LatentShift 52.1±4.3 65.6±3.1 76.9±3.1 76.3±3.9 51.5±3.2 66.6±1.8

D’artagnan 55.3±6.6 47.4±17.4 56.5±6.3 53.9±6.4 49.1±2.3 40.0±29.9

DVCE 58.5±7.6 68.5±3.9 76.1±12.8 74.7±14.2 60.5±9.0 71.1±6.8

TABLE VII: Detection performance of a linear classifier trained using coun-
terfactual samples for HCP-Task based on the aggregate atlas. Results listed
separately for cortical and non-cortical ROIs.

Cortical Non-cortical

Acc. ↑ F1 ↑ Acc. ↑ F1 ↑
DreaMR 90.6±2.0 90.4±2.0 24.9±2.5 21.3±3.8
DiME 83.3±5.7 83.1±5.9 17.3±1.8 12.3±3.2

DiffSCM 68.7±6.8 66.0±6.0 19.8±1.9 12.8±1.9

CAG 66.5±6.7 65.6±7.0 21.5±3.8 15.5±6.0

CheXplain 21.0±5.3 13.7±4.3 14.1±0.5 6.4±1.6

DiVE 82.9±3.0 82.8±3.2 20.9±3.4 12.2±4.3

LatentShift 82.1±2.5 81.9±2.7 19.7±2.0 16.7±2.8

D’artagnan 62.9±8.1 61.8±7.0 16.9±0.7 10.6±3.3

DVCE 19.1±4.3 11.4±5.2 15.0±0.4 5.0±0.8

counterfactual explanation. Proximity, sparsity and FID values
for both spatiotemporal and FC features of counterfactual
samples are listed in Table V. For both types of features,
we find that the fidelity metrics of competing methods show
very similar distributions based on MMP versus aggregate
atlases, where DreaMR generally yields the lowest metric
values among competing methods. These results suggest that
DreaMR generates high-quality counterfactuals that are closely
aligned with the distribution of original fMRI samples not only
in cortical but also in cerebellar and subcortical regions.

B. Explanations based on Counterfactual Samples
Neuroscience studies routinely report that individual

cognition-related variables (e.g., sex or cognitive task) are
associated with characteristic patterns of brain responses [3],
[60]. Given a downstream deep-learning classifier trained to
detect such variables, the goal of counterfactual explanation
is to render important input features explicitly observable
in the differences between counterfactual and original fMRI
samples, such that classifier decisions can be directly inter-
preted without the need for further processing. This bears
out that the differences between counterfactual and original
fMRI samples should ideally follow the differences between
characteristic response patterns for the target versus original
variables. As such, the explanatory capability of a counterfac-
tual method can be assessed by examining the discriminative
information that the counterfactual samples explicitly carry
regarding the target versus original variables. Note that non-
linear classifiers (e.g., transformer-based classifiers explained
here) subject their inputs to multiple levels of processing to
unravel hidden features that are not directly observable in
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Fig. 4: Cortical explanation maps produced by
DreaMR for female (top panel) and male (bottom
panel) sexes on the HCP-Rest dataset, averaged across
five cross-validation folds. To obtain the cortical maps,
counterfactual samples were generated for each orig-
inal fMRI sample to flip the respective decision of
a deep fMRI classifier for sex detection. FC features
of original and counterfactual samples were separately
derived, and the differences between the two sets of
samples were averaged across subjects. Important FC
features were determined by selecting the features
showing the top 5% of differences. Each important
region-of-interest (ROI) in the brain is marked with
a dot on the anatomical template, and connectivity
between ROIs is shown with a bar. Dot size denotes
the importance of the ROI, and bar thickness denotes
the importance of the connection. ROIs are colored
according to the functional network they belong to
(see legend). Lateral and superior brain views are
displayed. LH: left hemisphere, RH: right hemisphere;
SomMot: somatomotor; DorsAttn: dorsal attention;
SalventAttn: Salience/ventral attention.

their inputs, and so their results can reflect spurious bias
from the architecture of the classification model rather than
the explicit information content of the inputs [3], [72]. To
avoid potential biases, we adopted a linear classifier to assess
the discriminative information that is explicitly observable
in counterfactual samples [73]. A separate linear classifier
was fit using the counterfactual samples generated by each
competing method [36]. The linear classifiers were then tested
on the original fMRI samples to detect the same variables
as the nonlinear transformer-based classifiers. Table VI lists
accuracy and F1 for linear classifiers based on competing
methods and the Schaefer atlas. DreaMR elicits the highest
detection performance in all cases (p<0.05). On average across
folds, DreaMR outperforms competing methods in accuracy
by 22.1%, F1 by 15.9% on HCP-Rest; accuracy by 25.7%, F1
by 27.3% on HCP-Task; accuracy by 20.6%, F1 by 11.2%
on ID1000. This finding indicates that DreaMR generates
counterfactual samples that better capture the characteristic
differences in response patterns between distinct cognition-
related variables. We also questioned whether this benefit is
evident beyond the cerebral cortex. For this purpose, we exam-
ined the discriminative information in counterfactual samples
for HCP-Task based on the aggregate atlas including non-
cortical ROIs. Each counterfactual sample generated based
on the aggregate atlas was split into two subsamples, one
containing only cortical ROIs and the other containing only
non-cortical ROIs. Accuracy and F1 metrics of separate linear
classifiers fit for cortical versus non-cortical ROIs are listed
in Table VII. Among competing methods, DreaMR attains
the highest detection performance for both cortical and non-
cortical ROIs (p<0.05). Note that while non-cortical ROIs
generally show above chance-level detection performance (i.e.,
>14.3% accuracy), the detection performance for cortical
ROIs is substantially higher. This finding implies that fMRI
responses in cortical regions represent a greater amount of
information about cognitive tasks included in the HCP-Task
dataset than those in non-cortical regions.

Next, counterfactual samples from DreaMR were analyzed
to derive cortical explanation maps that reflect the important
FC features associated with individual classes detected by

downstream transformer-based classifiers. To do this, differ-
ences of FC features between original and counterfactual
samples were computed. Important features showing the top
5% of differences across subjects were determined. As a
representative case, cortical explanation maps for each sex
on HCP-Rest are displayed in Fig. 4 based on the Schaefer
atlas. For females, relatively important features are observed
in dorso-medial prefrontal and medial-posterior segments of
the default mode network, parietal and medial segments of
the control network, orbitofrontal segments of the limbic
network, temporal-occipital and prefrontal segments of the
salience/ventral attention network, posterior segments of the
dorsal attention network, central segments of the somata-
motor network, and medial segments of the vision network.
Meanwhile, for males, important features are observed in
ventral- and dorsal-prefrontal segments of the default mode
network, lateral-parietal and lateral-prefrontal segments of
the control network, temporal-pole segments of the limbic
network, medial segments of the salience/ventral attention
network, posterior segments of the dorsal attention network,
precentral segments of the somatamotor network, and lateral
segments of the vision network. Note that these patterns in
the cortical distribution of important FC features are closely
aligned with the neuroimaging literature that identifies promi-
nent sex-related differences in resting-state connectivity across
the default mode, control, limbic, attention and somatomotor
networks [10], [74]. In particular, ROIs distributed across
relatively medial segments of default mode and control net-
works, associated with social cognition and executive control,
have been suggested to show relatively higher FC values
in females than males [75]. Similarly, ROIs in relatively
orbitofrontal segments of the limbic network associated with
emotion and memory have been reported to show higher FC
values in females than males [76], [77]. While both sexes can
show important FC features in the somatosensory network
associated with motor tasks and in attention networks asso-
ciated with multi-sensory spatial tasks, FC values across these
networks have been reported to show stronger tendency for
left lateralization in females and right lateralization in males
[75], [78], as also evident in our cortical explanation maps.
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TABLE VIII: Inference times (Inf., msec) and memory load (Mem., gigabytes)
per generation of a counterfactual fMRI sample.

HCP-Rest HCP-Task ID1000
Inf. Mem. Inf. Mem. Inf. Mem.

DreaMR 2735 3.7 1173 2.7 1114 2.7
DiME 22104 6.0 14806 4.2 14918 4.2
DiffSCM 14327 3.5 7049 2.3 7343 2.4
CAG 116 4.3 45 3.2 45 3.3
CheXplain 384 3.0 491 2.9 282 2.9
DiVE 1750 3.8 1121 3.1 1149 2.8
LatentShift 967 3.7 850 2.9 829 2.2
D’artagnan 146 3.3 62 3.3 59 3.3
DVCE 23456 5.1 10740 4.1 10293 4.1

TABLE IX: Fidelity of spatiotemporal features of counterfactual samples gen-
erated by DreaMR variants formed without a transformer, without Langevin
sampling, without fractional diffusion, without multi-phase distillation, and
with guidance from classifiers trained on noisy fMRI samples.

Prox. ↓ Spar. ↓ FID ↓
DreaMR 41.4±0.5 11.7±0.2 21.2±0.8

w/o transformer 48.2±0.6 14.5±0.2 23.8±1.0

w/o Langevin 43.9±0.2 12.8±0.1 20.5±1.0
w/o fraction 42.5±1.0 12.2±0.4 21.1±1.1

w/o mp distillation 47.9±0.7 14.5±0.3 22.1±1.3

w noisy-classifier 41.6±0.6 11.8±0.2 21.3±1.1

The overall consistency of our findings with the neuroimaging
literature suggests that DreaMR is a promising framework
to identify fMRI features that are characteristic to individual
variables such as sex that influence cognitive function, and
hence drive the decisions of downstream fMRI classifiers for
these variables.

C. Computational Efficiency
A practical concern for counterfactual generation is the

efficiency in resampling of original fMRI samples. Table VIII
lists inference time and memory use of competing methods
based on the Schaefer atlas. In inference time, non-iterative
CAG and D’artagnan methods are the fastest, whereas iterative
DiME, DiffSCM and DVCE based on conventional diffusion
priors are notably slower. The remaining iterative methods in-
cluding DreaMR require intermediate inference times between
the two extremes. Note that the FMD prior in DreaMR enables
substantially improved efficiency over conventional diffusion
priors, and comparable efficiency with VAE and GAN priors.
In terms of memory load, DreaMR has comparable demand to
methods based on VAE and GAN priors, comparable demand
to DiffSCM, and moderately lower demand than DiME.

D. Ablation Studies
A series of ablation studies were conducted on the HCP-

Rest dataset to assess the importance of the main design
elements in DreaMR. For this purpose, several ablated variants
of DreaMR were considered. First, we examined the influence
of utilizing a transformer architecture, calculating the denoised
sample estimate for classifier guidance based on iterated
Langevin sampling, using fractional diffusion, using multi-
phase distillation, and using classifier gradients on denoised
sample estimates. A ‘w/o transformer’ variant replaced the
transformer with the common UNet architecture for diffusion
priors [28]. A ‘w/o Langevin’ variant replaced the denoised

TABLE X: Fidelity of spatiotemporal features of counterfactual samples for
DreaMR variants formed by implementing the FMD prior with varying
number of fractions (F ) and number of distillation phases (P ).

Fractions Distillation phases

F Prox.↓ Spar. ↓ FID ↓ P Prox.↓ Spar. ↓ FID ↓
1 42.5±1.0 12.2±0.4 21.1±1.1 5 45.1±0.5 13.3±0.2 19.7±1.1
2 41.3±0.7 11.7±0.3 21.0±0.8 6 43.6±0.5 12.7±0.2 20.1±0.6

4 41.4±0.5 11.7±0.2 21.2±0.8 7 41.4±0.5 11.7±0.2 21.2±0.8

8 41.0±0.4 11.6±0.2 21.8±0.5 8 44.9±0.6 13.2±0.3 19.7±1.1

sample estimate obtained through iterated Langevin sampling
across diffusion fractions with a single-shot estimate predicted
by the denoising network of the current fraction. A ‘w/o
fraction’ variant used a single fraction for the diffusion prior.
A ‘w/o mp distillation’ variant used a single-phase distilled
diffusion prior. A ‘w noisy-classifier’ variant computed the
conditional score function for classifier guidance by training
a separate classifier on noisy fMRI samples instead of using
the original classifier on clean samples. Proximity, sparsity
and FID values for spatiotemporal features of counterfactual
samples are listed in Table IX based on the Schaefer at-
las. Overall, we find that DreaMR outperforms all ablated
variants, except for ‘w/o Langevin’ that yields moderately
lower FID and ‘w noisy-classifier’ that generally performs
similarly. Compared to DreaMR, ‘w/o transformer’ yields 6.8
higher proximity (16.4% performance loss), 2.8 higher sparsity
(23.9% loss), 2.6 higher FID (12.3% loss); ‘w/o Langevin’
yields 2.5 higher proximity (6.0% loss), 1.1 higher sparsity
(9.4% loss); ‘w/o fraction’ yields 1.1 higher proximity (2.7%
loss), 0.5 higher sparsity (4.3% loss), and 0.1 higher FID (0.5%
loss); ‘w/o mp distillation’ yields 6.5 higher proximity (15.7%
loss), 2.8 higher sparsity (23.9% loss), 0.9 higher FID (4.2%
loss). While diffusion-based elements elicit relatively limited
benefits for FID, their contributions to proximity and sparsity
are more comparable to the transformer architecture. Note that,
in calculating the score function for classifier guidance, the ‘w
noisy-classifier’ variant replaces the surrogate gradients based
on the original classifier with the true gradients of a classifier
separately trained on noisy fMRI samples. We observe that
DreaMR and ‘w noisy-classifier’ perform very similarly, sug-
gesting that the gradients of the original classifier serve as a
successful surrogate. Taken together, these results suggest that
each interrogated design element contributes significantly to
method performance.

We then examined the influence of the number of diffusion
fractions (F ) and distillation phases (P ) on the fidelity of the
counterfactual samples generated by the FMD prior. To do this,
variants of DreaMR were trained for varying F while P=7,
and for varying P while F=4. Table X lists proximity, sparsity
and FID values for spatiotemporal features of counterfactual
samples produced by DreaMR variants based on the Schaefer
atlas. We find that the selected values of F=4, P=7 generally
attain near-optimal performance. While F=8 yields slightly
lower proximity and sparsity values, F=4 is preferable as it
offers higher training efficiency by halving the number of
distinct denoising networks to be learned. While P=5 and
P = 8 yield slightly lower FID, they have moderately higher
proximity and sparsity values, and P=7 offers over sixteen
times faster sampling than P = 5 since inference time for
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counterfactual generation scales nearly quadratically with the
number of diffusion steps.

VI. DISCUSSION

To our knowledge, DreaMR is the first diffusion-based
counterfactual explanation method for fMRI analysis, and it
is the first method in the literature that synergistically com-
bines multi-phase distillation with fractional diffusion based
on an efficient transformer backbone. This unique design
enables DreaMR to simultaneously attain high fidelity and
efficiency in counterfactual generation, unlike conventional
diffusion priors that face a characteristic fidelity-efficiency
trade-off. Ablation studies demonstrate that each design el-
ement contributes significantly to explanation performance.
Comparison studies demonstrate that DreaMR provides more
reliable explanations than competing methods based on state-
of-the-art VAE, GAN and diffusion priors. Note that the
diffusion baselines DiffSCM, DiVE and DVCE are devoid
of the unique technical innovations that DreaMR embodies.
As such, our results collectively indicate that DreaMR helps
push the performance envelope in counterfactual explanation.
At the same time, DreaMR achieves significantly improved
efficiency in sample generation over conventional diffusion
priors, resulting in brief inference times that approach the
repetition time (TR) of common fMRI acquisitions.

The inference efficiency of DreaMR can be beneficial in
real-time fMRI applications such as intraoperative planning,
brain-computer interfaces, communication with locked-in pa-
tients, and therapeutic regulation of brain activations [29].
Real-time fMRI requires rapid detection of cognition-related
variables to provide timely feedback for user intervention (e.g.,
a surgeon deciding on resection margins while the subject
performs a cognitive task, or a patient trying to control
brain activity to suppress tremor). Deep-learning classifiers
promise sensitive detection of cognitive variables from real-
time fMRI data, albeit poor interpretability can limit user trust
in classifier decisions [79]. With its fast inference, DreaMR
can facilitate rapid intervention by avoiding undesired de-
lays in counterfactual explanation. Another domain that can
benefit from the efficiency of DreaMR is cohort studies that
involve large-scale analyses of fMRI scans from a subject
population to associate features in imaging data with specific
classes of neurological disease [30]. Although deep-learning
classifiers have emerged as state-of-the-art tools in establishing
such associations, they still suffer from limited interpretability
[30]. Note that explaining deep-learning classifiers with con-
ventional diffusion priors can be computationally burdening
for fMRI datasets comprising thousands of subjects, tens of
different disease classes, and various different candidates for
classifier architectures. In this context, adopting DreaMR for
explaining classifier decisions can help improve reliability and
efficiency of data analyses in cohort fMRI studies.

Recent neuroimaging studies employing deep-learning clas-
sifiers have reported promising results on detection of
prevalent neurodegenerative (e.g., mild cognitive impairment,
Alzheimer’s) and neurodevelopmental (e.g., attention deficit
hyperactivity disorder, Autism) conditions from resting-state

fMRI scans [7], [8]. As these fMRI studies are increasingly
adopting complex network architectures such as transformers
[35], providing reliable explanations for classifier-driven di-
agnostic decisions via DreaMR can offer important benefits
in terms of building user trust and accelerating translation
to clinical use. The utility of fMRI classifiers in clinical
diagnostics inevitably depends on the prospect of fMRI for
capturing disease-related signatures in the nervous system,
and current evidence suggests that fMRI can be a valuable
component of multi-modal disease assessments [80], [81].
While we primarily demonstrated DreaMR on fMRI scans in
the current study, it is important to note that the proposed
explanation method can also be adopted to explain classifiers
built on other types of imaging data including structural
or dynamic MRI scans that are pervasive in diagnosis of
musculoskeletal, neurological and cardiovascular diseases.

Limitations

Several lines of technical limitations could be addressed to
further improve DreaMR. Following common practice, here
we analyzed fMRI data preprocessed to register brain volumes
onto an anatomical template. This procedure facilitates com-
prehensive and consistent region definitions across subjects
based on an atlas [1], yet registration onto a template can
yield spatial information losses. Potential losses might be
mitigated by backprojecting atlas-based region definitions onto
the brain spaces of individual subjects [82], and preserving
spatial representations of individual subjects via enhanced
localization mechanisms in transformer models [83], [84].

The diffusion priors in DreaMR were trained here from
scratch on public fMRI datasets comprising several hundred
subjects. Literature suggests that such sizable datasets might
be critical in adequate training of diffusion priors. In resource-
limited application domains where data are scarce, fine tuning
diffusion priors pretrained on time-series data such as audio
waveforms might help improve learning [85]. Knowledge
distillation from adversarial priors might also be employed
to facilitate training of diffusion priors [86], [87].

Counterfactual generation with a diffusion prior requires
formation of an initial sample that reflects a noisy repre-
sentation of the original data sample. In this study, initial
samples were derived by adding random Gaussian noise onto
the original samples, following the forward diffusion process.
Several other techniques have been proposed in the literature to
obtain the initial noisy samples [50], [88]. As these techniques
can alter the distribution of initial noisy samples, they might
also influence the fidelity of resultant counterfactual samples.
For instance, it has been suggested that DDIM inversion
improves distributional similarity between counterfactual and
original samples, as it derives noisy representations based on
estimates of noise components in original samples [50]. Yet,
such inversion can also elevate nuisance noise correlations
between counterfactual and original samples across the ROI
and temporal dimensions, potentially restricting the represen-
tational capacity of the diffusion prior. In early phases of the
study, we implemented a variant of DreaMR based on DDIM
inversion, and while this variant yielded moderate benefits
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in fidelity of spatiotemporal features, it performed subopti-
mally in fidelity of FC features and in linear classification
analyses that reflect the level of discriminative information
about cognitive variables captured by counterfactual samples
(i.e., for the representative sex-detection task on HCP-Rest,
78.0% accuracy, 80.0% F1 with Gaussian noise addition versus
62.9% accuracy, 55.4% F1 with DDIM inversion). That said,
further work is warranted to comprehensively evaluate the
relative benefits of Gaussian noise addition versus alternative
techniques to obtain noisy representations in the context of
counterfactual explanations of deep fMRI classifiers.

Here, DreaMR was implemented with uniform diffusion
fractions of equal duration to give similar emphasis on
each fraction. Alternatively, non-uniform fractions could be
employed to help account for potential variability in the
denoising task across the diffusion process due to varying
noise levels and feature details. When a sufficiently large
number of fractions are prescribed that help effectively capture
task variability, we would not expect substantial differences
between uniform versus non-uniform fractions. Yet, when a
relatively limited number of fractions are prescribed, non-
uniform fractions might offer potential performance benefits.
In such cases, longer-duration fractions can be employed in
diffusion segments of relatively slow variation, and shorter-
duration fractions can be employed in segments of relatively
fast variation in the characteristics of the denoising task. Future
work is warranted to systematically assess the performance
benefits of non-uniform versus uniform diffusion fractions.

To shorten sampling times for counterfactual generation,
DreaMR leverages multi-phase distillation of its fractional dif-
fusion prior. This distillation procedure lowers computational
burden for the testing stage, at the expense of additional burden
introduced by distillation in the training stage. Corroborating
recent reports, here we observed that distillation via a moderate
number of phases helps improve sample quality compared to
using a relatively limited number of phases [54]. Still, when
needed, single-phase distillation procedures can be adopted to
improve efficiency during the training stage at the expense
of moderate losses in sample quality. Here, we obtained
efficient explanations for fMRI samples lasting hundreds of
time frames. Naturally, the burden of counterfactual generation
during the testing phase grows with the temporal dimension of
fMRI scans. In applications where the load becomes excessive
due to high temporal resolution or long scan duration, the
FMD prior might be combined with other efficient sampling
approaches for accelerated diffusion [65], [89]. During the
testing stage, DreaMR uses a nested algorithm where an inner
loop produces estimates for the clean sample via Langevin
sampling, and this estimate is then used to compute classifier
guidance that drives the outer loop to produce the counterfac-
tual sample. This algorithm was adopted as the inner loop does
not induce unduly burden given the large step sizes prescribed
for DreaMR, and since it was observed to yield higher sample
quality. That said, the efficiency and simplicity of the sampling
algorithm might be improved by discarding the inner loop and
instead using the single-shot network estimate for the clean
sample. Further work is warranted to systematically assess the
benefits of various sampling algorithms in terms of sample

fidelity versus efficiency during counterfactual generation.

Future Work
Here, we utilized DreaMR to explain transformer-based

classifiers that predict discrete cognitive states given brain
responses. Several extensions can be pursued to expand the
scope of the proposed methodology. First, classifiers based
on alternative convolutional or recurrent architectures might
be considered [6], [10], [64]. Since counterfactual generation
is a model-agnostic framework, DreaMR can in principle be
adopted to other architectures without modification. Second,
many neurodegenerative and neurodevelopmental diseases are
reported to have complementary biomarkers in fMRI as well
as anatomical or diffusion-weighted MRI [80], [81]. A more
performant classifier for disease-related cognitive states could
be attained by using multi-modal images as input. DreaMR
can be adopted for explaining such multi-modal classifiers by
training a multi-modal FMD prior.

DreaMR also holds potential for explaining regression mod-
els in fMRI analysis based on deep neural networks. The
human brain represents information on continuous stimulus
or task variables, which can be decoded from brain responses
via regression [60]. Deep regression models can also be em-
ployed to predict voxel- or ROI-wise responses given stimulus
variables [90]. To adopt DreaMR, guidance from classification
loss during counterfactual generation could be replaced with
guidance from regression losses. It remains important future
work to assess the efficacy of DreaMR in a broader set of
explanation tasks in fMRI analysis.

It might be possible to adopt DreaMR to explain deep-
learning models used to analyze other types of neuroimaging
data beyond fMRI scans. Neuroimaging studies principally
record spatiotemporal features of neural activity while cog-
nitive variables are experimentally manipulated. For instance,
electroencephalography measures local field potentials [91]
and magnetoencephalography measures local magnetic fields
caused by neural activity [92], near-infrared spectroscopy
measures hemodynamic changes consequent to neural activity
[93], and microelectrode arrays directly measure multi-unit
activity [94]. Inferences are then drawn by analyzing the
association between measured features and cognitive vari-
ables. In this context, deep-learning classifiers have recently
gained traction as a leading approach to detect cognitive
variables from measured features [95]. Yet, their limited inter-
pretability hampers trust in inferences based on classification
performance. In principle, DreaMR could help interrogate
the specific spatiotemporal features of neural activity that
contribute to classifier decisions, thereby enhancing the utility
of classification analyses in neuroimaging studies.

VII. CONCLUSION

In this study, we introduced a novel counterfactual expla-
nation method for fMRI based on a fractional multi-phase-
distilled diffusion prior. Demonstrations on resting-state and
task-based fMRI indicate that DreaMR achieves higher sam-
pling efficiency and fidelity against competing counterfactual
methods, facilitating interpretation of downstream classifier
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decisions. Therefore, the proposed method holds great promise
in enabling explainable analysis of multi-variate fMRI data
with deep-learning models.
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