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Highlights
• The encoding power of receive arrays has significantly improved over the last two decades, and acceleration factors

of an order of magnitude became attainable through parallel imaging. This implies that receive arrays now perform

most of the image encoding, whereas gradient coils are contributing a much smaller portion.

• Spatial variation in coil sensitivities increases at ultra-high fields, which permit yet higher acceleration factors.

Combined with the SNR advantage of higher fields, this renders submillimeter-resolution imaging feasible.

• While controlled aliasing strategies have enabled optimal utilization of the degrees of freedom in modern dense

receive arrays, compressed sensing, low-rank constraints, and deep learning priors have provided a yet better trade-

off between image SNR and contrast versus scan time.

9.1 Introduction
Image encoding inMRI has been mainly performed using gradient coils, which create spatially varying

magnetic fields that encode spins’ position into their resonant frequencies. The spatial encoding power

of radiofrequency receive arrays has significantly improved over the last two decades, and acceleration

factors of an order of magnitude and higher have become attainable through parallel imaging recon-

struction. This implies that receive arrays are now performing most of the image encoding, whereas

gradient coils are contributing a much smaller portion at high accelerations. As such, parallel imaging

and advanced reconstruction algorithms have emerged as important tools in our MR physics arsenal,

especially at ultra-high fields (UHF) where high acceleration rates permit acquisitions that probe brain

structure and function at mesoscale resolutions.

Spatial variations in coil sensitivity profiles increase at higher fields, and these increased degrees of

freedom allow higher acceleration rates to be achieved compared to lower field strength. Unfortu-

nately, undersampling in k-space leads to an intrinsic √R SNR penalty (where R is the acceleration

factor) since less data points are acquired, and thus, there is less “noise averaging” being performed.

Indeed, at high acceleration factors, this intrinsic SNR penalty can prohibit high-resolution imaging at

3T or lower field strengths as the resulting images may become too noisy for practical use. The SNR

boost provided by going to UHF directly counteracts this penalty and thus renders high acceleration
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factors feasible. Coupled with the increased degrees of freedom in coil sensitivity profiles, high accel-

eration factors are well suited for UHF imaging, which enables unprecedented spatial and temporal

resolutions to be achieved.

This chapter will start by focusing on the basics of parallel imaging and controlled aliasing that aim

to fully utilize the degrees of freedom in dense receive arrays for highly undersampled acquisitions,

calibration scans, and coil sensitivity estimation approaches that permit robust utilization of such tech-

niques, and advanced model-based reconstructions and deep learning approaches that can utilize a

priori or learned regularizers to further push the acceleration. The chapter will conclude by looking

at the effect of going to higher field strengths on parallel imaging capability and examples that illustrate

the power and potential of image encoding at UHF.

9.2 Undersampled acquisitions and fundamental parallel imaging
approaches
Parallel imaging (PI) methods use the extra degrees of freedom in multichannel receive arrays to re-

construct images from undersampled acquisitions, thereby reducing the scan time. The reduction factor

(R) denotes the amount of subsampling performed during the acquisition and is also called the accel-

eration factor. PI relies on the fundamental relation between the imaging field of view (FOV) and the

spacing between the successive k-space lines, Dk, where FOV ¼ 1/Dk. This implies that a large FOV

requires dense sampling of k-space, and if the prescribed FOV is smaller than the object that is being

imaged, aliasing occurs. PI reduces the FOV deliberately by skipping lines in k-space and then tries to
resolve the aliasing in image space or estimate the missing lines by interpolating the acquired data in

k-space. In Fig. 9.1A, R ¼ 2-fold acceleration is obtained by skipping every other k-space line, thereby

FIG. 9.1

(A) SENSE is a fundamental parallel imaging approach that operates in image space, where aliased signal

replicas are unfolded using the coil sensitivity profiles explicitly. This is demonstrated in (B), where each

coil contributes a linear equation that relates the aliasing voxels to the acquired coil signal. In (C),

equations coming from all coils are assembled into a matrix, which leads to an overdetermined linear

system that can be inverted to unalias the signal.
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increasing the spacing between successive lines to 2Dk. This, in turn, reduces the imaging FOV by half

and causes the voxels that are FOV/2 apart to alias on top of each other.

Sensitivity encoding (SENSE) (Pruessmann et al., 1999) is a fundamental image-space approach

where coil sensitivity profiles are used explicitly to unalias voxels by solving a set of linear equations.

Generalized auto-calibrating partially parallel acquisition (GRAPPA) (Griswold et al., 2002) uses the

spatial variations in coil sensitivities implicitly to synthesize missing k-space lines using a linear com-

bination of the acquired data. Both image- and k-space approaches rely on auto-calibration signal

(ACS) data to estimate either coil sensitivity maps or the linear combination weights required for

k-space data interpolation.

The simultaneous acquisition of spatial harmonics (SMASH) technique (Sodickson and Manning,

1997) precedes both SENSE and GRAPPA and contains underlying principles of both of these influ-

ential approaches. SMASH seeks a linear combination of coil sensitivities that can explicitly form Fou-

rier harmonics (resembling SENSE) and then uses these linear weights to synthesize missing k-space
data (akin to GRAPPA). In the following, we will examine these image- and k-space PI algorithms in

detail.

9.2.1 PI in image space
As shown in Fig. 9.1B, two voxels that are FOV/2 apart, r1 and r2, will alias on top of each other in an
acquisition at R ¼ 2-fold acceleration. Focusing on a particular coil with sensitivities denoted by c1 and
c2 in these voxel positions, SENSE models the relation between the acquired aliased signal, m, and the
unknown voxel intensities r1 and r2 as

m ¼ c1r1 + c2r2 (9.1)

indicating that the unknown magnetization is weighted by the coil sensitivity, then aliased in image

space. Given that we have multiple coils, each providing one additional observation, we can assemble

these linear equations into matrix format (Fig. 9.1C)

m ¼ Cr: (9.2)

Here m is an Nc � 1 vector of aliased signals in each coil, r are the unknown R � 1 voxel

intensities (R ¼ 2 in this example), C is the Nc � R coil sensitivity matrix, and Nc denotes the

number of coils.

The linear system in Eq. 9.2 can be solved in the least squares sense by minimizing

r� ¼ argminr Cr - mk k22,
¼ CHC

� �-1
CHm:

(9.3)

If present, an Nc � Nc channel noise covariance matrix, C, which describes the levels and corre-

lation of noise in receiver coils, can be incorporated to obtain an SNR-optimal solution

(Pruessmann et al., 1999)

r�optSNR ¼ CHC-1C
� �-1

CHC-1m: (9.4)
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9.2.2 Geometry factor (g-factor)
The matrix inversion in Eq. 9.4 becomes more ill-conditioned at high acceleration rates, which leads to

mathematical noise amplification during image reconstruction. This noise amplification is captured by

the geometry factor (or g-factor) map and is given by (Pruessmann et al., 1999)

gr ¼ CHC-1C
� �-1h i

r,r
CHC-1C
� �

r,r

� �1=2

� 1, (9.5)

where the indices []r,r denote the diagonal elements corresponding to voxel r. Since the g-factor is

greater than or equal to 1, it is common to report the inverse of the g-factor to ensure that it remains

in the interval [0,1]. 1/g-factor reports the retained SNR after parallel imaging reconstruction as shown

in Fig. 9.2. Since coil sensitivity profiles are less spatially varying in the middle of the FOV, g-factor is

often worse in these regions. This can be better visualized in the R ¼ 4 case in Fig. 9.2, where the

zoomed-in region of interest (ROI) exhibits higher noise in the middle (white and deep gray matter)

and less noise in the periphery (cortex).

Although an Nc ¼ 8 channel array was used in this simulation experiment, acceleration factors

beyond R ¼ 4 lead to prohibitive noise amplification. We still have more observations than unknowns

in Eq. 9.2 since Nc > R, but not all these observations are linearly independent because coils that are in
close proximity around the head contribute similar encoding information. Further, the acceleration in this

experiment is performed only along the phase encoding direction (vertical axis), whereas the eight coils

are distributed around the head in 2 dimensions. As such, variations in these eight coils are shared among

the vertical and horizontal axes, which makes R > 4-fold acceleration in only one direction difficult.

FIG. 9.2

An 8ch SENSE reconstruction simulation is conducted to show the limits of acceleration. While R¼2- and 3-fold

accelerations lead to successful reconstructions, noise amplification is visible especially in the R¼4 case. The

noise amplification is spatially varying and more severe in the middle of the FOV. This can also be seen in the

1/g-factor maps in the bottom row, where up to �80% of SNR is lost during parallel imaging reconstruction in

the middle of the FOV. The shape of the 1/g-factor maps also reflects the acceleration factor, e.g., 4 bands of

aliased replicas are visible at R¼4.
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9.2.3 Generalized SENSE reconstruction
The encoding matrix in Eq. 9.4, (CHC-1C)-1CHC-1, is very small (of size R � Nc) and the equation

can be computed rapidly, yet this needs to be performed for each of the collapsed voxels in the image,

which may be computationally intensive. Apart from computing these small problems in parallel,

another way to facilitate rapid computation is to represent the entire unknown 2D image as a vector

r, which is now of size (NxNy)� 1 where Nx and Ny are the number of voxels in readout and

phase-encoding axes. This leads to the more flexible relation

r� ¼ argminr

X
i
kDFCi � r - yik22 with i ¼ 1, . . . ,Nc, (9.6)

where Ci now denotes a matrix whose diagonal entries are the sensitivities of the ith coil for the entire
slice, F is a 2D discrete Fourier transform (DFT) operator, D is a k-space undersampling mask, and yi
denotes the acquired k-space data for the ith coil. Though represented as matrix-vector operations, this

formulation permits rapid computations through element-wise multiplications that implement (Ci�r),
whereas F is conveniently evaluated using the 2D fast Fourier transform (FFT). While it would still be

possible to operate in image space by replacing the DFT operator with a “point spread function” matrix

that explains image aliasing, the transition to k-space allows us to use nonuniform sampling patterns

where the spacing between successive lines is not held constant. Such sampling strategies can be easily

represented by the diagonal sampling mask D that has binary elements. Eq. 9.6 can be solved using

least squares solvers such as conjugate gradients (CG) and provides the additional flexibility of

incorporating regularization, which will be detailed in Section 9.4.

9.2.4 PI in k-space using GRAPPA
Unlike SENSE where coil sensitivity profiles are explicitly used in the reconstruction, GRAPPA uses

them implicitly to estimate missing k-space data. This estimation is performed across coils and within a

small neighborhood in k-space as described in the following:

sj kx, ky
� � ¼ X

i

X
m2U

X
n2V wj i,m, nð Þ si kx + mDkx, ky + nDky

� �
with i ¼ 1, . . . ,Nc: (9.7)

Here, sj(kx,ky) is the target missing k-space sample in the jth coil (black point in Fig. 9.3A), and wj is the

k-space “kernel” used for interpolating the data for the jth coil. This kernel computes a linear combi-

nation of the acquired points si(kx + mDkx, ky + nDky) not only inside small neighborhoods in k-space
(denoted withU and V for the kx and ky axes) but also across all the coils. The underlying assumption in

GRAPPA is that there are linear dependencies across coils that permit such estimation, which is akin to

SMASH.

As demonstrated in Fig. 9.3B, GRAPPA suffers from similar limitations as SENSE when the

acceleration factor is pushed beyond R>4 along a single dimension. At R ¼ 5, this reconstruction

using a 32ch head array begins to suffer from aliasing artifacts, which become severe at R ¼ 6. At this

latter acceleration factor, noise amplification especially in the middle of the FOV becomes apparent.

An advantage of GRAPPA over SENSE is in its kernel calibration. Until recently, estimation of coil

sensitivities for SENSE has suffered from robustness issues, as they need to be smoothed and carefully

masked to exclude nontissue signals (Section 9.5 will detail new techniques that boosted the robustness

of sensitivity estimation). GRAPPA, on the other hand, does not need coil sensitivities to be explicitly

known, but only requires the estimation of the kernels wj. To make this possible, fully sampled ACS

1439.2 Undersampled acquisitions and fundamental parallel imaging approaches



data are used. Here, both the target sj(kx,ky) and the neighboring k-space data si(kx + mDkx,ky + nDky) in
Eq. 9.7 are known. As such, a large “calibration matrix” can be built by creating one row for each (kx,ky)
point inside the ACS region. This then permits the estimation of the kernels in the least squares sense

due to Wj ¼ S{ Sj, where Wj is the vectorized version of the k-space kernel wj, S
{ ¼ (SHS)-1SH is the

pseudo-inverse of the calibration matrix, and Sj is the vector made from all the target points inside

the ACS. The kernel calibration step also admits Tikhonov regularization, where the kernel estimate

becomes Wj ¼ (SHS + lI)-1SH Sj, with l being the regularization parameter.

Another parameter that needs to be selected in GRAPPA reconstruction is the kernel size. Popular

choices include 3 � 3 and 5 � 5 in kx � ky axes, but larger kernel sizes can be used as well. The trade-
off is that smaller kernel sizes provide better g-factor performance, and larger kernels better mitigate

potential reconstruction artifacts. This can be understood by thinking of GRAPPA kernels as k-space
filters, where a smaller kernel will have more of a “low-pass” effect on the data, thus denoising it more

FIG. 9.3

(A) GRAPPA uses a linear combination of acquired k-space data in a small neighborhood across all coils to

estimate a missing point. (B) Similar to SENSE, GRAPPA suffers from residual aliasing and noise amplification

especially at higher acceleration factors of R¼5 and 6. Data were acquired using a single-shot echo planar

imaging (EPI) readout with 32ch reception at 3T.

144 Chapter 9 Parallel imaging and reconstruction techniques



effectively. On the other hand, larger kernels can help synthesize higher order Fourier harmonics and

thus reduce potential aliasing artifacts especially at higher accelerations. Finally, it is important to note

that the ACS data that allow for kernel estimation do not have to have the same contrast as the actual

undersampled imaging data. This point is valid for both sensitivity estimation for SENSE and kernel

estimation for GRAPPA. As such, low-resolution, short echo time (TE) and short repetition time (TR)

gradient echo, ACS data can be used for calibration, which usually require a couple of seconds to ac-

quire. By this way, it becomes unnecessary to incorporate a fully sampled ACS region inside the actual

imaging scan, which often has longer TE/TR combinations to provide the desired contrast. Significant

time savings can be achieved with such “external” calibration scans.

Similar to SENSE, an analytical expression for g-factor for the jth coil in GRAPPA reconstructions

can be defined using the matrix W made from image-space kernels (Breuer et al., 2009)

gj ¼ WHCW
� �

j,j
= C½ �j,j

� 	1=2

� 1: (9.8)

Alternatively, Monte Carlo simulations can be performed by injecting noise to k-space and running

GRAPPA reconstruction several times, then taking ratio between the standard deviation across these

reconstructions and the standard deviation of the added noise to obtain an empirical g-factor estimate

(Robson et al., 2008). This approach is powerful since it provides a general way to estimate g-factor

maps for arbitrary trajectories and advanced reconstructions. A caveat is that, with CS regularization

(e.g., L1 or low-rank), using different levels of standard deviation for the added noise may lead to dif-

ferent g-factor maps, since these regularizers may threshold the noise entirely depending on its level. In

such cases, it might be helpful to acquire a noise-only reference scan to be able to synthesize noise with

appropriate power.

9.2.5 PI in k-space using SPIRiT
Inspired by GRAPPA, SPIRiT takes a different approach to provide a more general solution that uses

data more efficiently and also formulates the reconstruction as an optimization problem that can ad-

mit additional, e.g., compressed sensing (CS) regularizers (Lustig and Pauly, 2010). The main dif-

ference is that GRAPPA enforces consistency between the synthesized points and the neighboring

acquired data, whereas SPIRiT enforces consistency between every point and its neighborhood

across all coils. In other words, the acquired data should be able to generate the missing points,

but also the missing points need to be able to synthesize the acquired points as well as other missing

data. This also leads to a different definition of the reconstruction kernel. In GRAPPA, a kernel spans

a large extent in k-space since only the acquired data are counted in the kernel size. For example, at

Ry ¼ 3-fold acceleration, a 3 � 3 kernel would have a k-space extent of 3 � 7 in (kx,ky) axes. In
SPIRiT, a 3 � 3 kernel implies a literal 3 � 3 neighborhood, where all 9 points contribute to each

other. This is expressed via

sj ¼
X

i
gij � siwith i ¼ 1, . . . ,Nc

or

s ¼ Gs,

(9.9)

where gijs denote the SPIRiT kernels, which are convolved with the entire k-space data si in the ith coil,
then summed over all coils to yield the jth coil’s reconstructed k-space, sj. This is written more
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succinctly as s ¼ Gs, where s now denotes entire k-space concatenated across all coils, andG is a matrix

containing gijs in appropriate positions. Finally, SPIRiT enforces data consistency via

y ¼ D � s, (9.10)

where D is a linear operator that selects only the acquired k-space locations out of the entire k-space
grid, and y is a vector of the acquired k-space data concatenated together. The self- and data-

consistency constraints in Eqs. 9.9 and 9.10 can be combined to yield the SPIRiT loss function

s� ¼ argmins kDs - yk22 + l k G - Ið Þ sk22, (9.11)

where l is a regularization parameter. We can eliminate the need for selecting this parameter by solving

only for the missing k-space data, ŝ, through the formulation s ¼ DTy+Dc
Tŝ, whereDT andDc

T select the

acquired and nonacquired data and put them back in the full k-space grid (Lustig and Pauly, 2010). This
leads to

argmins D DTy + Dc
Tŝ

� �
- y



 

2
2
+ l G - Ið Þ DTy + Dc

Tŝ
� �

 

2

2

¼ y + 0 - yk k22 + l G - Ið Þ DTy + Dc
Tŝ

� �

 

2
2
,

¼ argminŝ G - Ið ÞDTy + G - Ið ÞDc
Tŝ



 

2
2
,

(9.12)

which can be solved using a standard CG solver.

SPIRiT is also auto-calibrating, where the kernel estimation is performed similar to GRAPPA and

can admit Tikhonov regularization. Unlike GRAPPA which functions as a k-space filter, the iterative
nature of Eq. 9.11 allows SPIRiT to use more involved regularizers during the reconstruction stage as

well (Lustig and Pauly, 2010; Murphy et al., 2012), which will be detailed in Section 9.4.

9.3 Controlled aliasing in parallel imaging (CAIPI) and non-Cartesian
trajectories
Modern head coils have large channel counts (32ch or higher) which are often distributed uniformly

around the head. This makes it possible to accelerate in more than one phase encoding axis. 2D accel-

eration is a powerful concept and easily permits R ¼ 4-fold acceleration to be distributed as R ¼ 2 � 2

between two-phase encoding axes in 3D-encoded acquisitions (Weiger et al., 2002; Blaimer et al.,

2006). Importantly, the concept of 2D acceleration can be generalized to multislice imaging through

simultaneous multislice (SMS) encoding (Feinberg et al., 2011; Setsompop et al., 2012; Moeller et al.,

2010; Nunes et al., 2006; Larkman et al., 2001). In SMS, multiple slices are excited simultaneously,

which causes the acquired signal to be the superposition of all of these excited slices. Either image- or

k-space based PI reconstruction is then used to unalias the collapsed slices (Zahneisen et al., 2015).

SMS encoding admits undersampling in the phase encoding axis within each slice as well, which is

denoted as “Rinplane” acceleration. Simultaneous excitation of multiple slices is performed using

tailored MultiBand (MB) RF pulses, thus leading to the nomenclature Rtotal ¼ Rinplane �MB, where
Rtotal is the combined acceleration factor and MB is the number of simultaneously excited slices.

Acceleration in 2D allows the utilization of Controlled Aliasing in Parallel Imaging (CAIPI), where

aliasing voxels can be pushed further apart in image space to improve g-factor performance. CAIPI is

146 Chapter 9 Parallel imaging and reconstruction techniques



applicable to both 3D (Breuer et al., 2006) and SMS encoding (Breuer et al., 2005). In 3D imaging, this

is achieved by altering the sampling pattern in the 2D phase encoding plane, which changes the aliasing

pattern of the collapsing voxels in image space (Fig. 9.4A, right). This is particularly helpful for uni-

formly distributing the total acceleration factor across the 2D phase encoding axes. For instance, at

Rtotal ¼ 8, standard 2D sampling would be constrained to distribute aliasing either as Ry � Rz ¼ 4 � 2

or 2 � 4. The high R¼ 4-fold acceleration in one of the axes would lead to a high g-factor penalty.

Instead, with CAIPI, this can be distributed more evenly (i.e.,�√8) by staggering the sampling pattern

using Dky or Dkz gradient blips.
Application of the CAIPI concept to SMS encoding is slightly more involved. In spin-warp imaging

where k-space is acquired line-by-line, controlled aliasing can be achieved by modulating the phase of

theMBRF pulse (Breuer et al., 2005). This permits shifting the aliasing slices with respect to each other

in the phase encoding direction, thus increasing the distance between aliasing voxels (Fig. 9.4A, mid-

dle). In an MB ¼ 2 experiment, the phase of the RF pulse exciting one of the slices can be alternated

between 0 and p radians across successive phase encoding lines. This creates a phase ramp in k-space
and causes an FOV/2 shift in image space in the y-direction. Such phase modulation ideas can be gen-

eralized to higher MB cases. For EPI readouts, it is not possible to alternate the phase of the RF pulse

FIG. 9.4

(A) Standard 2D (slice-by-slice) imaging does not lend itself well to high acceleration, as aliasing voxels are very

close to each other. When Simultaneous MultiSlice (SMS) or 3D encoding are used, two axes, phase encoding (y)

and slice/partition (z) directions, become available to spread aliasing. Controlled aliasing in parallel imaging

(CAIPI) improves on this by introducing slice-shifting in SMS and staggered sampling in 3D encoding to

further push the distance between aliasing voxels. (B) In wave-CAIPI, the conventionally “fully-sampled”

readout (x) direction can be used to spread aliasing in addition to the y- and z-axes, thus better harness the

degrees of freedom in receive arrays in all three dimensions.
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between k-space lines since there is only a single RF per entire k-space. In these cases, blipped-CAIPI
(Setsompop et al., 2012) can be utilized. Instead of RF phase modulation, FOV shifting is made pos-

sible by playing Gz gradient blips across k-space lines. Gz blips create a linearly varying phase depo-

sition in the slice axis, whose amplitude can be adjusted to provide the desired FOV shift in the target

slice positions. Application of SMS in EPI has been impactful, as it has allowed rapid diffusion and

functional imaging acquisitions and has been popularized by the Human Connectome Project

(Setsompop et al., 2013; Sotiropoulos et al., 2013).

It is possible to push the CAIPI idea further by also utilizing the conventionally fully sampled read-

out axis to spread aliasing. Zigzag GRAPPA achieves this by playing rapidly oscillating gradients on

the Gy gradient during the readout (Breuer et al., 2008). As the name implies, this leads to a zigzag

trajectory in k-space, which spreads the aliasing in x- as well as y-axes and improves acceleration

capability. The reconstruction is performed using multiple GRAPPA kernels that conform to the shape

of the non-Cartesian trajectory. In Bunched Phase Encoding (BPE), signal processing concepts were

introduced to reconstruct such zigzag sampled data without the need for sensitivity encoding

(Moriguchi and Duerk, 2006). Wave-CAIPI is a generalization of zigzag GRAPPA and BPE, where

oscillating gradients are played on both Gy and Gz gradients (Bilgic et al., 2015). Using a sine on, e.g.,

Gy and cosine waveform onGz gradients creates a “corkscrew” trajectory in k-space. Different from the

preceding methods, wave-CAIPI represents this non-Cartesian trajectory as a convolution with a point

spread function (PSF) so that a fully Cartesian reconstruction becomes possible (Fig. 9.4B). This PSF

formalism also helps explain the g-factor benefit of playing sinusoidal waveforms: taking an inverse

DFT of the non-Cartesian data leads to image-space picture (Fig. 9.4B, right) where voxels are spread

out in the readout direction. The amount of this spreading is a function of the y-position, e.g., there is
little spreading in the middle of the FOV, but this increases toward the edge of the object. This way,

aliasing voxels are pushed further apart from each other in the x-direction, in addition to the y- and
z-axes that are exploited through standard controlled aliasing.

Controlled aliasing can be applied in other non-Cartesian trajectories as well. In radial-CAIPI,

RF phase modulation is performed across radial k-space lines. In anMB ¼ 2 experiment, alternating

the phase between 0 and p radians in one of the slices largely cancels out the aliasing signal con-

tributions from this slice (Yutzy et al., 2011). This permits separating out the two slices even without

the aid of sensitivity encoding and renders total acceleration rates of Rtotal ¼ 10 or higher feasible

using a 12ch array. Blipped-spiral trajectory is another powerful way to spread aliasing across three

spatial axes (Zahneisen et al., 2014). Generalizing blipped-CAIPI to spiral imaging permits distrib-

uting MB acceleration across slice, as well as between kx and ky axes. Further, it is possible to rotate
the interleaves in the kx-ky plane across different kz partitions during 3D stack-of-spirals acquisitions,

thus exploiting another degree of freedom to introduce complementary sampling for rapid imaging

(Deng et al., 2016).

9.4 Model-based reconstruction for parallel imaging
Image reconstruction in PI involves inverting the forward system model expressed in Eq. 9.2. For rel-

atively limited R, traditional PI methods such as SENSE or GRAPPA can offer satisfactory reconstruc-

tion performance. However, the inverse problem becomes heavily ill-conditioned due to the reduced

number of measurements at higher R (Pruessmann et al., 1999). This results in heavy residual artifacts
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and/or noise amplification in reconstructed images. To improve conditioning, prior knowledge on the

distribution ofMRI data can be incorporated to constrain the solution set of the reconstruction problem.

This is commonly achieved by augmenting the inverse problem based on the system model with a reg-

ularization term. For image-domain reconstructions such as SENSE, the modified optimization prob-

lem can be expressed as

r� ¼ argminr

X
i
kAir - yik22 + lr R rð Þ, (9.13)

where r is the MR image, yi are k-space data for the ith coil, Ai ¼ DFCi is the systemmatrix component

for the ith coil, R(.) is the regularization function, and lr is the regularization weight. For k-space
reconstructions such as SPIRiT, the regularized reconstruction is instead expressed as follows:

s� ¼ argmins

X
i
kDsi - yik22 + l1 k G - Ið Þsk22 + lr R sð Þ, (9.14)

where yi are acquired k-space data for the ith coil and s is the aggregated k-space data across all coils.
Differing in terms of their assumptions regarding the data distribution, main-stream regularization

functions used in parallel MRI reconstruction include smoothness (Lustig and Pauly, 2010), sparsity

(Murphy et al., 2012), low-rank (Haldar and Zhuo, 2016), and recently deep priors (Hammernik et al.,

2017). These fundamental approaches to regularized reconstruction are detailed below.

9.4.1 Smoothness priors
The spectrum of MR images rapidly decay from low- toward high-spatial frequencies in k-space.
A corollary is that tissue signals show relatively gradual spatial variation in MR images. Furthermore,

bodily organs typically contain tissue blocks with relatively uniform signal levels. As such, a traditional

approach to separate tissue signals from white noise in MRI has been incorporation of smoothness

priors either in image domain or k-space (Lustig et al., 2007). Common regularization functions include

total-variation (TV) norm (i.e., l1-norm of the gradient) and l2-norm:

R rð Þ ¼ rrk k1 or R sð Þ ¼ ksk22: (9.15)

Smoothness priors allow separation of additive white noise from gradually varying tissue signals

in MR images. However, excessive regularization leads to spatial blurring or block artifacts in

reconstructions.

9.4.2 Sparsity priors
MR images are considered to have sparse representations in known linear transform domains such as

wavelet transform, where they can be represented with much fewer coefficients than would be required

in image domain (Murphy et al., 2012). In turn, compressed sensing theory dictates that it should be

possible to recover MR images from randomly undersampled acquisitions by enforcing a sparsity prior

(Lustig et al., 2007). Although theoretically motivated, random undersampling in k-space yields low
SNR efficiency due to the inhomogeneous distribution of energy across the spectrum of MR images. In

practice, random undersampling with a variable density across k-space to mimic the image spectrum

enhances measurement efficiency while still generating spatially incoherent artifacts in the image

domain. Afterward, the sparsity prior can be incorporated to the reconstructions via an l1-norm term:

R rð Þ ¼ F rf gk k1 or R sð Þ ¼ F F-1s
� �

 



1
, (9.16)
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where F stands for the transform domain where the images have sparse representations, e.g., wavelet

transform. Sparsity priors coupled with random sampling can allow separation of incoherent aliasing

artifacts from tissue signals. However, excessive regularization typically leads to loss of detailed, small

image features in reconstructions.

9.4.3 Low-rank priors
Multicoil MR images reflect multiplicative modulation of the underlying MR image with sensitivities

of individual coils. Multiplication via broad coil sensitivities in the image domain corresponds to con-

volution with relatively compact kernels in k-space. As such, k-space samples from multiple coils can

be cast in the form of a matrix with block Hankel structure, inherently possessing low rank (Haldar and

Zhuo, 2016; Shin et al., 2014). Recovery of missing k-space samples in undersampled acquisitions is

then equivalent to recovering missing entries in the matrix via structured low-rank matrix completion.

This completion can be achieved by enforcing thematrix to have low rank. Thus, low-rank priors can be

incorporated via a regularization term

R sð Þ ¼
X

i
si2 H sð Þð Þ such that rank Hð Þ 	 r, (9.17)

where H is the structured low-rank matrix, si is the ith singular value of H, and r denotes the upper

bound for matrix rank. Structured low-rank matrix completion has dualities to smoothness or sparsity

priors, so prescribing excessively low r values during recovery can cause loss of image features during

reconstruction.

9.4.4 Deep priors
Smoothness, sparsity, or low-rank priors commonly involve hand-constructed regularization terms that

rely on certain assumptions regarding the MR image distribution. When these assumptions diverge

from the properties of the actual data distribution, they can introduce undesirable reconstruction biases

and suboptimal performance. To surmount this difficult challenge, recent studies have adopted deep

learning models for constructing priors for MRI reconstruction. Given a training set of undersampled

and corresponding fully sampled acquisitions, a neural network can learn an indirect prior to suppress

aliasing artifacts encountered in examples of training data (Dar et al., 2020). To do this, the network can

be trained via solving a regularized optimization problem

w� ¼ argminw

X
i
kAiNw ruf g - yik22 + lr Nw ruf g - rok k1, (9.18)

where Nw is the network mapping with parameters w, ru are MR images obtained via Fourier recon-

struction of undersampled acquisitions, and ro are ground-truth MR images based on fully sampled

acquisitions. The data-consistency term based on the forward system model can also be incorporated

into the network architecture via unrolling based on estimated coil sensitivities (Hammernik et al.,

2017), or end-to-end estimation of coil sensitivity and the MR image can be performed (Shin et al.,

2014). Afterward, the trained network can unalias Fourier reconstructions of undersampled acquisi-

tions (Fig. 9.5).

Alternatively, a network can learn a direct prior that captures the distribution of MR data to con-

strain the set of reconstructions to high-quality images. The high-qualityMRI prior can be trained using

either fully sampled auto-calibration data in undersampled acquisitions, or else trained using MR im-

ages derived from fully sampled acquisitions (Korkmaz et al., 2022). Reconstructions based on direct
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MRI priors involve an iterative inference procedure to minimize the data-consistency loss on acquired

k-space samples:

w�, r� ¼ argminw

X
i
kAiNw ruf g - yik22, where r� ¼ Nw� ruf g: (9.19)

Building a network model requires prolonged training procedures on a large array of training data. Yet,

reconstructions based on deep priors typically offer higher performance than those based on hand-

constructed priors as they can learn from and adapt to data flexibly, and they often offer faster inference.

9.5 Estimation of coil sensitivities
Coil sensitivity profiles determine the spatial encoding capabilities introduced by coil arrays over

gradient-based encoding. Accordingly, coil sensitivities must be known to set up the forward system

model in image-domain methods such as SENSE. While coil sensitivities are not explicitly derived in

k-space methods, they are still implicitly embedded in k-space interpolation kernels due to the duality

between image and Fourier domains. Therefore, regardless of the reconstruction domain, PI recon-

structions must be informed regarding coil sensitivities to leverage coil-driven spatial encoding. In this

section, we overview common approaches for the estimation of coil sensitivities including external

calibration methods, auto-calibration methods, joint sensitivity estimation and reconstruction methods,

and calibrationless methods.

FIG. 9.5

Given a training set of undersampled and corresponding fully sampled acquisitions, a neural network can learn an

indirect prior to suppress aliasing artifacts encountered in examples of training data. To do this, the network can

be trained via solving a regularized optimization problem that weights a data-consistency loss based on the

forward system model against a pixel-wise loss between the network output and the ground truth image.

Afterward, the trained network can de-alias Fourier reconstructions of undersampled acquisitions.
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9.5.1 External calibration
A straightforward approach for coil sensitivity estimation is to perform external calibration measure-

ments (Pruessmann et al., 1999). This method requires access to a body coil that offers a homogeneous

sensitivity profile over the imaged volume. UHF systems often lack a body coil. For such magnets, an

alternative is to operate the coil array of interest in birdcage mode to attain relatively uniform sensi-

tivity across the field-of-view. Images collected with spatially homogeneous sensitivity are taken as a

reference, and coil sensitivity profiles can then be estimated by normalizing images collected with the

coil array by the reference image (Fig. 9.6A)

Ci ¼ ri=rref , (9.20)

where rref denotes the reference image and ri is the image for the ith element in the coil array.

External calibration is a powerful approach that allows estimation of absolute sensitivity information.

However, inadvertent movement in between measurements with the body coil and coil array, or any

drifts in coil sensitivities between the calibration measurements and the actual scans, can cause errors in

sensitivity estimates.

FIG. 9.6

Common methods for coil sensitivity estimation. (A) External calibration method. Images acquired with the coil

array of interest are normalized by a reference image acquired separately via a body coil with homogeneous

sensitivity. (B) Assuming that coil sensitivity should show gradual spatial variation, a low-order polynomial is fit

to individual coil images. (C) Calibration data aggregated across coils are subjected to a singular value

decomposition to estimate coil sensitivity profiles.
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Indeed, the acquisition of high-quality external calibration data plays an important role for robust

echo planar imaging (EPI) reconstruction. For high-resolution whole-brain EPI data often acquired

at UHF, reference scans can be lengthy (10 s or longer), which increases the vulnerability to subject

motion as well as B0 changes due to respiration. Since B0 fluctuations scale with the field strength, it is

crucial to perform calibration scans robust to physiologic variations. Standard calibration scans rely on

multishot EPI readouts, which obtain “fully-sampled” reference data when their k-space is averaged

across multiple shots. These standard reference scans run through all the slices to cover the imaging

FOV for the first shot, then proceed to acquire all the slices for the second shot. As such, when the

multishot data are combined, each slice receives contributions from several seconds of scan time.

An alternative, motion-robust calibration approach is the fast low-angle excitation echo-planar tech-

nique (FLEET) method (Polimeni et al., 2016). In FLEET, all shots belonging to slice 1 are acquired

first, then all shots for the next slice position are sampled. By this way, each slice’s k-space data are
subject to a much shorter acquisition time frame of 100–200 ms, thereby significantly boosting the

robustness of such external calibration scans.

9.5.2 Auto-calibration
To mitigate the need to perform separate calibration measurements, coil sensitivities can instead be

estimated based on the very data subject to PI reconstruction. For image-domain methods that require

explicit sensitivity estimates, polynomial fitting can be used. Coil sensitivity profiles reflect the receive

B1 field expected to vary gradually across space, so they predominantly contain low-spatial-frequency

components. In turn, a limited degree polynomial can be fit to individual coil images to capture gradual

intensity modulations due to coil sensitivities (Fig. 9.6B)

P x, yð Þ ¼
Xn

k¼0
ak � xq � yr , such that q + rð Þ 	 k, (9.21)

where P denotes a polynomial over two spatial dimensions (x,y) of degree n and ak denotes the scaling
factor of the kth term in the polynomial fit. Since polynomial fitting can be cast as a linearized regres-

sion problem, the solution can be obtained via least-squares minimization (Pruessmann et al., 1999)

Ci ¼ argmina k P x, yð Þ - ri x, yð Þ k22: (9.22)

An alternative approach is the ESPIRiT method that estimates coil sensitivity via an eigenvalue prob-

lem expressed using fully sampled calibration data at the center of k-space (Uecker et al., 2014).

Aggregating auto-calibration data across coils into a calibration matrix, ESPIRiT observes that this

matrix has a nonempty null space and calibration data that lie entirely in the row space of the calibration

matrix. Since these fundamental observations should also hold for other k-space regions outside the

auto-calibration region, aggregated k-space data in remaining regions should be consistent with cali-

bration data. Assuming that linear relationships between k-space patches across coils are characterized
with a reconstruction operator W, consistency to calibration data can be expressed as

Ws ¼ s, (9.23)

where s denotes k-space data. Substituting the forward system model in Eq. 9.23, we get

WFCr ¼ FCr, (9.24A)

F-1WF
� �

Cr ¼ Cr: (9.24B)
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It follows from Eq. 9.24B that coil sensitivities are an eigenvector of (F-1WF) and thereby W with an

eigenvalue of 1. Thus, coil sensitivities that form a basis for the row space can be derived based on

eigendecomposition of W (Fig. 9.6C).

9.5.3 Joint sensitivity estimation and reconstruction
Both external and auto-calibration methods perform a priori estimation of coil sensitivities, and the

derived estimates are then used as fixed variables in the forward systemmodel during PI reconstruction.

Therefore, any estimation errors for coil sensitivities will translate into reconstruction errors due to

inaccuracies in the forward system model. To help mitigate errors in sensitivity estimation, a joint op-

timization problem can be solved instead that simultaneously estimates coil sensitivities along with the

reconstructed image. For image-domain methods, this can be achieved by modifying the problem for-

mulation in Eq. 9.13 as

r�,C� ¼ argminr,C

X
i
kDFCir - yik22 + lr R rð Þ: (9.25)

Meanwhile, for k-space methods, the modified problem formulation is

s�,G� ¼ argmins,G

X
i
kDsi - yik22 + l1k G - Ið Þsk22 + lr R sð Þ, (9.26)

whereG is the k-space interpolation operator that is to be estimated. Optimization over two distinct sets

of variables can be performed via alternating minimization approaches.

9.5.4 Calibrationless reconstruction
Acquiring fully sampled k-space lines is common in PI applications as it enables either explicit esti-

mation of coil sensitivities or implicit sensitivity estimation in the form of interpolation kernels in

k-space. However, in certain cases, it may be impractical to perform Nyquist sampling within a ded-

icated k-space region such as time-interleaved k-space sampling, or imaging at very high acceleration

rates. In such cases, performing PI reconstruction in the absence of calibration data can be attempted

via calibrationless approaches such as P-LORAKS or SAKE (Haldar and Zhuo, 2016; Shin et al.,

2014). Observing that k-space samples from multiple coils should form a system matrix with block

Hankel structure, reconstruction is formulated as a structured low-rank matrix completion problem.

In this framework, enforcing low rank in the Hankel matrix implicitly enables estimation of missing

k-space entries in the matrix, without the need for explicit estimates of coil sensitivities or interpolation

kernels. For instance, a k-space reconstruction can be implemented as

s� ¼ argmins

X
i
kDsi - yik22 + lr

X
n
sn2 H sð Þð Þ such that rank Hð Þ 	 r, (9.27)

where H is the structured low-rank matrix, sn is the nth singular value of H, and r denotes the upper
bound for matrix rank.

9.6 Coil sensitivity profiles vary more rapidly across space at UHF, thereby
improving g-factor performance
As coil sensitivity profiles become more localized and spatially varying at higher field strengths, it is

expected that similar coil geometries will have better g-factor performance at UHF. This expectation
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has been demonstrated through numerical simulations (Wiesinger et al., 2004a) and experimental

data (Wiesinger et al., 2004b). We have used the MARIE electromagnetic simulation toolbox

(Villena et al., 2016) to explore the field strength dependence of g-factor performance across 3T,

7T, and 9.4T using the same 31ch coil geometry in Fig. 9.7. Noise covariance was taken to be identity

(C¼I). As demonstrated in the exemplar profiles, both phase and magnitude of coil sensitivities

become more spatially varying toward higher fields. This is reflected in the g-factor performance,

where SENSE at UHF clearly outperformed 3T reconstructions. For example, the average g-factor at

9.4T using R ¼ 4 � 3 acceleration was better than that of the 3Tg-factor at the lower R ¼ 3 � 3-fold

rate. The ability to support higher undersampling factors is complemented by the SNR increase at

higher field strengths, which should more than compensate for the increased √R intrinsic SNR pen-

alty and render such acceleration factors feasible at submillimeter resolutions. An active research

field is the development of very dense coil arrays at UHF. The construction of 64ch (Uğurbil

et al., 2019) and 128ch head arrays (Gruber et al., 2021) increased the PI capability well beyond

the commercially available 32ch UHF coils, whereas simulations of 256ch designs helped underline

the potential of massively parallel arrays in pushing the acceleration factors even further (Hendriks

et al., 2019).

FIG 9.7

(Top) Exemplar magnitude and phase coil sensitivities for two channels out of a 31ch numerical simulation are

depicted. 1/g-factor maps report results from 1-dimensional undersampling (at R ¼ 4 and 5) as well as

2-dimensional CAIPI reconstructions (at R¼ 3 � 2, 3 � 3 and 4 � 3). (Middle) Going to 7T, coil sensitivity

profiles become more spatially varying, and “singularities/fringe lines” become visible in the phase of the

sensitivity maps. G-factor performance improves over 3T. (Bottom) At 9.4T, coil profiles are yet more rapidly

varying and this leads to further gains in g-factor. For instance, R ¼ 4 � 3 acceleration at 9.4T has slightly

better performance as the R ¼ 3 � 3 case at 3T. This is also true for R ¼ 5 at 9.4T, compared to the

reconstruction at R ¼ 4-fold acceleration at 3T.

1559.6 Coil sensitivity profiles vary more rapidly across space at UHF



9.7 Exemplar applications enabled by the increased encoding power of
UHF systems
Going to higher fields provides two complementary benefits for efficient image encoding. As detailed

in the previous section, coil sensitivity profiles are more localized at UHF, thus permitting higher ac-

celeration factors to be achieved. Additionally, the SNR boost provided by higher field strengths ren-

ders such high acceleration factors practical. For instance, wave-CAIPI readily permits R ¼ 3 � 3-fold

acceleration with negligible g-factor penalties (Polak et al., 2018), yet the impact of the intrinsic √R
penalty on SNR causes the images to be relatively noisy for routine practical use at 3T. As such, with

the advent of advanced parallel imaging strategies, we have become SNR limited, rather than encoding

limited, especially for high-resolution (�1 mm isotropic) data at 3T or lower field strengths. While

regularization techniques can help boost the SNR, going to UHF directly makes such acceleration fac-

tors practical and impactful. An example to this is the wave-encoded MPRAGE acquisition at 1 mm

isotropic resolution in Fig. 9.8A, which was completed in under a minute with near-perfect g-factor

FIG. 9.8

(A) A 57-s, 1-mm isotropic MPRAGE acquisition with adequate SNR became possible at R¼4�3-fold

acceleration using wave encoding by capitalizing on the SNR gain of 7T imaging. (B) Single-shot EPI with

SMS encoding at Ry�MB¼3�5-fold acceleration yielded high-quality gradient echo data for functional

imaging studies. (C) The superlinear boost of UHF gradient echo imaging permits trading off SNR for

resolution, in this case permitting a 500mm isotropic QSM acquisition at R¼5�3-fold acceleration using

wave encoding. All acquisitions were made using a 31ch head receiver array.
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performance. Such a rapid acquisition at R ¼ 4 � 3-fold acceleration would have been too noisy at 3T

when using a standard wave-CAIPI reconstruction.

There is a superlinear relation between the SNR and the field strength for gradient echo (GRE)

imaging, e.g., going from 3T to 7T provides a �3.1-fold SNR boost instead of the expected �2.3-fold

(Pohmann et al., 2016). This makes highly accelerated, high-resolution GRE acquisitions extremely

favorable at UHF. Fig 9.8 provides two important example applications. In Fig. 9.8B, whole-brain sin-

gle-shot EPI with high-quality reconstructions became possible at Ry � MB ¼ 3 � 5 acceleration, thus

providing high temporal resolution and high geometric fidelity simultaneously for functional imaging

applications. In Fig. 9.8C, the superlinear SNR gain is traded off for spatial resolution in an

Ry � Rz ¼ 5 � 3-fold accelerated wave-GRE acquisition at 500mm isotropic resolution. This permitted

quantitative susceptibility mapping (QSM) reconstruction from a �20 min scan where three acquisi-

tions were made with different head orientations relative to the main magnetic field. Combination of

the mesoscale resolution and susceptibility contrast mechanism revealed exquisite contrast in the cor-

tex and deep gray matter (axial) as well as in the cerebellum (coronal view).
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