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12.1 Introduction

The remarkable level and diversity of soft tissue contrasts in magnetic resonance
imaging (MRI) has rendered it a preferred imaging modality for diagnostic imaging.
Yet, prolonged examinations and associated healthcare costs often prohibit the acquisi-
tion of comprehensive multi-contrast protocols. Even when such protocols are viable,
image quality might be compromised in a subset of acquisitions owing to system
imperfections and/or uncooperative patients. As a result, there is emerging interest
in the synthesis of MR images that are of poor quality or completely absent from the
protocol [1–5]. Learning-based methods based on deep neural networks (DNNs) are
gaining immense traction in this domain by their ability to capture joint distributions
of multi-contrast MR images and to identify nonlinear mappings between separate
contrasts [6–10].

Two main classes of synthesis approaches have come forth for multi-contrast MRI
synthesis, namely unconditional and conditional methods. In unconditional synthesis,
the aim is to generate new, independent, samples from a target image distribution. The
most common base neural architecture basis for unconditional MRI synthesis has been
generative adversarial networks (GANs). Such networks involve a game-theoretic
competition between two subnetworks: a generator that tries to generate synthetic
data samples, and a discriminator that tries to distinguish the fake samples from the
generator using real samples of the desired data distribution. When the generator
grows sufficiently strong to deceive the discriminator, it can generate realistic data
samples. Given their unparalleled ability to learn data distributions, GANs have been
adopted for synthesizing high-quality MR images given simply random noise samples
as input [11, 12].

In conditional synthesis, the aim is to generate samples from a target distribution
that are consistent with prior information from a source distribution. For MRI syn-
thesis, the goal is to create an image from a target contrast given input images of the
same anatomy from different source contrasts. As such, the structural content of the
source images are used as prior information to conditionally improve the quality of
the target samples generated. As in the unconditional case, GAN models have proven
their exceptional performance for conditional MR image synthesis, as they character-
istically offer much better capture of structural details compared with conventional
learning-based models [8–10, 13–15].
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Generative adversarial network models have enabled a leap in the realism and
quality of multi-contrast MRI synthesis, powering it to improve the diagnostic
value of MRI examinations. In this chapter, we discuss recent GAN-based synthesis
approaches and their applications in MRI synthesis. We start with a quick overview
of the physics underlying tissue contrasts in MRI. We then give a review of GAN
basics, followed by an overview of existing unconditional and conditional models. We
highlight collaborative GANs as a representative case of unified synthesis models for
multiple distinct target contrasts. Finally, we close the chapter with a summary and
outlook for future research in this area.

12.2 Physics for MR Contrast

Owing to the abundance of hydrogen in the body’s water, it is the most widely imaged
nucleus in MRI. Single protons within the hydrogen nuclei spin around a central axis
along the direction of its magnetic moment. The spin axes are incoherently aligned
in the absence of external inputs, resulting in zero net magnetization. However, when
the spins are inserted into a static external magnetic field (Bo), they precess around
the applied field at the Larmor frequency and a net magnetic moment builds up in
the direction of Bo, i.e., the longitudinal direction. A radio-frequency (RF) pulse
exerted on the spins then tips their orientation to the transverse plane, with the flip
angle of the pulse determining the degree of tip. Once the RF pulse is turned off, the
magnetization gradually returns to equilibrium by back-aligning itself with Bo. This
restoration results in a decay of the transverse component of magnetization, with time
constant T2, and growth of the longitudinal component, with time constant T1. The
transverse component of the tissue magnetization is then sensed through flux changes
on dedicated receiver coils. Meanwhile, additional magnetic field gradients are applied
along Cartesian axes for spatial encoding. The resulting signal recorded at the receiver
coil is given as

s(t) =
∫

x

∫
y

∫
z

M(x,y,z)e−t/T2(r) exp

(
−iγ

∫ t

0
G(τ).r dτ

)
dxdydz (12.1)

where M(x,y,z) is the spatial distribution of the transverse magnetization, r= [x,y,z],
G = [Gx,Gy,Gz], T2 is the relaxation constant, and γ denotes the nucleus-specific
gyromagnetic ratio. In the k-space formulation, the gradient terms are expressed
with spatial frequency variables along each axis, kx , ky , and kz. Setting kx(t) =
(γ/2π)

∫ t

0 Gx(τ) dτ, ky(t) = (γ/2π)
∫ t

0 Gy(τ) dτ, and kz(t) = (γ/2π)
∫ t

0 Gz(τ) dτ,
the signal equation modifies to

s(t) =
∫

x

∫
y

∫
z

M(x,y,z)e−t/T2(r)e−i2π[kx (t)+ky (t)+kz(t)]dxdydz. (12.2)

Note that Eq. (12.2) corresponds to the 3D Fourier transform of the magnetization,
and k-space is simply the Fourier transform of the imaged volume. The periodic
execution of the RF and gradient fields determines the signal levels of various tissues
in MRI, which are dependent on the tissue-specific relaxation parameters (T1 and T2).
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Therefore, the tissue contrasts in MRI can be manipulated by varying the RF pulse
strength and pulse sequence timing. A mainstream sequence in MRI is the spin-echo
sequence, whose signal is expressed as:

So = Kρ(r)[1− e−T R/T1(r)]e−T E/T2(r) (12.3)

where ρ(r) is the proton density, K is the instrumental scaling constant, T R is the
repetition time of the pulse sequence, T E is the echo time, and T1 and T2 are relaxation
parameters. In spin-echo sequences, the tissue contrast can be adjusted to weight either
the T1 or T2 values by altering T E/T R. For instance, T1-weighted contrast can be
obtained by choosing low T E and moderate T R, whereas T2-weighted contrast can
be obtained by choosing moderate T E and long T R. Through multiple acquisitions
with different sequence parameters, the same anatomy can be imaged under different
tissue contrasts, increasing the breadth of diagnostic information captured.

12.3 Brief Review of Generative Adversarial Networks (GANs)

Generative models are of great interest thanks to their ability to model high-
dimensional probability distributions. In supervised learning, pairs of input–labels
are given to the model, and the model learns the mapping between the pairs. On the
other hand, the purpose of generative models, or unsupervised learning methods in
general, is to approximate the distribution p(·) over the data x. Generative models
can be divided into two large categories: explicit-density models and implicit-density
models. While the former try to maximize the likelihood either directly or indirectly,
the latter implicitly model the distribution, leveraging the property of being able to
sample from the distribution.

Concretely, GANs define a prior p(z) of input-noise variables which will be used to
sample the data from the modeled distribution. An input variable then passes through
a generator G, which maps the input variable to the distribution of the target high-
dimensional data (e.g., the image). Another component that consists of a GAN is the
discriminator D. The discriminator learns to represent the probability D(x) ∈ [0,1]
that the given data x belongs to the real data distribution. Values closer to 0 mean that
the discriminator has decided that it is unlikely that the given data was sampled from
the real distribution, and values closer to 1 mean that the given data was realistic. The
two components, G and D are pitted against each other in a mini–max game, where D

tries to maximize the probability of correctly classifying the real and fake data, while
G tries to minimize the probability of D being correct by generating realistic data to
fool D [16]. Often, this competitive learning strategy is described with an analogy to
a police officer (D) and a counterfeiter (G), where the counterfeiter gets better and
better at deceiving the police officer, while the police officer gets consistently better at
catching the counterfeiter.

The actual implementation of a GAN, as depicted in Fig. 12.1, models G and D

with differentiable deep neural networks, and the network parameters are updated by
optimizing the following loss function:
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Figure 12.1 Illustration of a generative adversarial network

min
G

max
D

V (D,G), (12.4)

where

V (D,G) = Ex[log D(x)]+ Ez[log(1−D(G(z))]. (12.5)

By iterating the update steps between G and D, the objective of GAN is to reach a
Nash equilibrium, which means that each component is at its optimal state in relation
to the opposite component. When the training is properly performed, the generator is
able to produce very realistic data that are hard to distinguish from the real data.

While one acknowledges the strong representational power of GANs, they are also
notorious for being hard to optimize. Often, optimization fails and the model either
stagnates in bad local minima or ends up with mode collapse [17]. Therefore, the
design of GAN loss functions has been an area of great interest [18–21]. When Eq.
(12.5) is decoupled into two separate components, it can be written as

V (D) = −Ex[log D(x)]− Ez[log(1−D(G(z))],

V (G) = Ez[log(1−D(G(z))].
(12.6)

Although the vanilla (i.e., basic) GAN loss described in Eq. (12.6) is mathematically
sound, it does not perform particularly well in practice. A simple heuristic fix is to
change the cost function for the generator to

V (G) = −Ez[log D(G(z))]. (12.7)
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By changing the cost function to Eq. (12.7), the generator receives a stronger gradient
at the early stage of training, and thus is able to escape from bad local minima:

V (D) = Ex[D(x)]− Ez[D(G(z))]

V (G) = −Ez[D(G(z))]
(12.8)

Later, the authors of the Wasserstein GAN (WGAN) [18] proposed to use the “earth
mover’s” (EM) distance as the metric between the generated distribution and the target
distribution, as in Eq. (12.8). In contrast to minimizing the Kullback–Leibler (KL)
divergence in the vanilla GAN [16], it was shown that the WGAN loss is superior at
driving the cost to a global optimum both theoretically and experimentally. This idea
was further extended in WGAN-gp [19], where the authors imposed a gradient penalty
on top of the WGAN loss function to match a Lipschitz constraint.

Least squares GAN (LSGAN) [20] is another widely used GAN objective,
described in Eq. (12.9):

V (D) = Ex[(D(x)− b)2]+ Ez[(D(G(z))− a)2],

V (G) = Ez[(D(G(z))− c)2].
(12.9)

The main motivation of LSGAN is to pull the distribution of the generated data to
the real-data manifold; using this simple loss formulation has proved to be efficient in
many applications including image-to-image translation [22, 23].

Thanks to the great advances in training strategy and the development of effi-
cient neural architectures, GANs have revolutionized deep learning and generative
modeling over the past few years. Interestingly, although the first intuitive use of
GANs was to generate images out of random noise, GANs have been applied to
various fields, such as text-to-image generation [24], photo blending [25], and image-
to-image translation [22, 23]. Consequently, GANs are nowadays the main workhorse
of unsupervised deep learning, achieving the state-of-the-art in many areas including
the field of MR image synthesis.

12.4 MR Contrast Conversion using GAN

Generative adversarial models with convolutional neural network (CNN) backbones
are being widely adopted for MR image synthesis with a high degree of realism and
structural detail. Depending on whether prior information from source contrasts is
available, two main classes of model emerge: unconditional and conditional GANs. In
this section, we will overview the basics of the two types of model and discuss their
existing applications.

12.4.1 Unconditional GANs

Unconditional GANs learn to generate samples from a random noise vector without
any extra information regarding the target MR images [11, 12, 26–31]. The generator
is trained with the aim of generating realistic-looking MR images, and the discrimi-

https://doi.org/10.1017/9781009042529.016 Published online by Cambridge University Presshttps://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009042529.016
Downloaded from https://www.cambridge.org/core. Bilkent University Library, on 24 Oct 2023 at 08:05:30, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1017/9781009042529.016
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009042529.016
https://www.cambridge.org/core


284 Tolga Çukur, Mahmut Yurt, Salman U. H. Dar, Hyungjin Chung, Jong Chul Ye

nator is trained to distinguish real images from synthetic images. Classical GANs are
trained to minimize the following adversarial loss function:

�adv = Ext [log(D(xt ))]+ Ez[log(1−D(G(z)))] (12.10)

where z is the noise vector, xt denotes an image from the target distribution, G denotes
the generator, and D is the discriminator; G is trained to minimize �adv while D is
trained to maximize �adv.

Unconditional GANs are highly suited for data augmentation, to help improve the
training of learning-based methods. As such, they have found broad use in image
analysis tasks including segmentation and classification. For instance, synthetic car-
diac MRI samples have been shown to improve classification performance [12], and
volumetric brain MRI samples have been leveraged for enhanced segmentation [27].

As discussed before, a main limitation of vanilla GANs is their training instabilities,
which could compromise the realism and diversity of generated images. Enhanced
divergence measures have been proposed to alleviate this limitation, including the
earth mover’s distance in Wasserstein GAN (WGAN) [18]; this has been demonstrated
for multi-contrast brain MRI synthesis [28, 31, 32]. Another prominent approach rests
on the Pearson χ2 divergence in least squares GAN (LSGAN) [20]; this approach has
been demonstrated in prostate MR image synthesis for subsequent classification [32].

Another limitation of vanilla GANs involves the difficulty of training them on full-
resolution images directly. Progressively growing GANs (PCGANs) that sequentially
increase the image resolution during synthesis have been successfully demonstrated
for brain image synthesis in glioma patients [29] and later were adopted for segmen-
tation [30].

12.4.2 Conditional GANs

Conditional GANs learn to synthesize images in a target domain, given input images
from a separate source domain as prior information. In the case of MRI, the source
and target can be images of the same anatomy under separate MR contrasts.

In cross-contrast image synthesis, the aim is to learn the nonlinear mapping among
images of distinct MRI tissue contrasts. A pioneering study in this field introduced
pixel-GAN (pGAN) and cycleGAN (cGAN) methods for paired and unpaired MRI
synthesis, respectively [8]. In the presence of training data consisting of co-registered
images of source and target contrasts, pGAN leverages the pixel-wise and perceptual
losses between the synthesized and real target images in conjunction with an adver-
sarial loss (Fig. 12.2).

The pixel-wise loss can be expressed as

�pix = Ext,xs [‖G(xs)− xt‖1] (12.11)

where xs denotes the image of the source contrast. The perceptual loss function can
be expressed as:

�perc = Ext,xs [‖V (G(xs))− V (xt )‖1] (12.12)
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Figure 12.2 pGAN is a conditional GAN trained using co-registered images of source and target
contrasts [8]. pGAN is trained to minimize an adversarial loss, a pixel-wise loss, and a
perceptual loss. Note that, in the figure, T1 and T2 correspond respectively to xs and xt in Eq.
(12.13). © 2019 IEEE. Reprinted, with permission, from [8]

where V (·) denotes a pre-trained computer vision model. The pGAN method enables
a leap in accuracy of synthetic MRI over both conventional and prior deep-learning
methods in the brain, as illustrated in Fig. 12.3.

For cases when paired images of source and target contrasts from the same set of
subjects are unavailable, cGAN can be used to allow unpaired training with cycle-
consistency loss (Fig. 12.4). Cycle-consistency enforces self-supervision on the GAN
model:

�cc = Ext,xs [‖Gt �→s(Gs �→t (xs))− xs‖1 + ‖Gs �→t (Gt �→s(xt ))− xt‖1] (12.13)

where Gs �→t is trained to recover an image of the target contrast given an image of
the source contrast, and Gt �→s is trained to synthesize an image of the source contrast
given an image of the target contrast.

On the basis of the conditional GAN framework for multi-contrast MRI synthesis
introduced by [8], later studies have either adopted it for other multi-contrast MRI
synthesis applications [33, 34] or proposed additional loss terms to enforce enhanced
priors [35, 36], and there have been many-to-one variants that aggregate information
from multiple source contrasts [35, 37–39]. The authors of [37] incorporated multiple
source contrasts by concatenating them at the input level in the form of a many-to-one
GAN, and showed that this can enhance the overall recovery performance. In [38] it
was demonstrated that traditional many-to-one GANs based on concatenation at the
input level might be less sensitive to the unique information present within each source
contrast, and this could lead to sub-optimal performance. The authors of [38] further
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pGAN
(a)

(b)

Multimodal Replica Reference Source

Figure 12.3 Representative T1-weighted images of a healthy subject, and T2-weighted images
of a glioma patient recovered via pGAN: multimodal based on a traditional convolutional
neural networks, and replica based on random forests are shown [8]. Compared with the basic
the multimodal and replica, pGAN shows a remarkable recovery performance in both the
healthy subject and the glioma patient. © 2019 IEEE. Reprinted, with permission, from [8]

showed that fusing features from multiple one-to-one GANs dedicated for each source
contrast and a many-to-one GAN can lead to efficient recovery of both complementary
and shared information across the source contrasts.

Several fundamental advances have been introduced to the main conditional GAN
framework in recent studies. First, multi-tasking has been suggested as a means to
improve the quality of MRI synthesis [40–44]. In [42] the authors performed synergis-
tic synthesis and reconstruction by providing highly undersampled images of the target
contrasts as additional priors. Similarly, [44] jointly super-resolved and synthesized
the target contrast images.

Second, training instabilities were investigated particularly for 3D models whose
complexity renders the learning process suboptimal for inevitably limited medical
datasets. Spectral normalization and feature matching were proposed as two common
methods to improve GAN training [45]. Self-attention modules were incorporated to
reduce residual errors in focal, important, image regions [45]. Despite these advances,
the need for massive datasets for training 3D models remains. Recently, the authors
of [46] proposed the progressive decomposition of volumetric mapping into 2D map-
pings in a multi-planar fashion. The progressive model enforces spatial context to
prevent the incoherence and artifacts commonly encountered in 2D models and can
train accurate models for datasets that are several orders of magnitude smaller.

Most GAN-based models for MRI synthesis assume the availability of either paired
or unpaired samples of multi-contrast MRI images from source and target domains. In
practice, however, scan time limitations render it difficult to acquire fully sampled
images. A recent study addresses this vital gap in the literature by introducing a
semi-supervised GAN (ssGAN) model that can directly learn to synthesize MR images
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Figure 12.4 cGAN is a conditional GAN trained using unregistered images of source and target
contrasts [8]. cGAN is trained to minimize an adversarial loss and a cycle-consistency loss.
Note that, in the figure, T1 and T2 correspond respectively to xs and xt in Eq. (12.13). © 2019
IEEE. Reprinted, with permission, from [8]

from undersampled source and target contrasts [47]. A selective k-space loss function
in ssGAN delivers a performance on a par with state-of-the-art supervised methods; it
has highly accelerated datasets that are easier to collect.

12.5 Collaborative GAN for MR Contrast Conversion

Magnetic resonance contrast conversion is related to a topic that is broadly inves-
tigated in the field of statistics and machine learning: missing data imputation, or,
more simply, imputation. Formally, the goal of imputation is to estimate the missing
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element in the dataset using the remainder of the data and statistical modeling. Based
on different modeling assumptions and theories, there are several well-known methods
for imputation: regression imputation, nonnegative matrix factorization, stochastic
imputation, etc. [48, 49]. However, these conventional methods have limitations when
dealing with images. Unlike low-dimensional tabular data, image data exist in a high-
dimensional manifold, which makes them very hard to model directly. Fortunately,
owing to the recent development of deep learning, image imputation has now become
relevant. One typical method to tackle image imputation in the field of deep learning
is to consider the problem as image-to-image translation [9, 10, 22, 23, 50].

Among many studies, cycleGAN [23] has been the main workhorse owing to its
capability to train a network even in the case of unpaired settings. While in a typical
GAN there exists a single generator–discriminator set, cycleGAN exploits two sets of
generator–discriminator pairs to formally address the mapping between two different
image spaces,

x̂t = Gi �→t (xi), (12.14)

x̂i = Gt �→i(xt ), (12.15)

where i,t are the input domain and the target domain, respectively, and Gi �→t , Gt �→i

are the generators that execute the mapping. However, a major shortcoming of using
cycleGAN is that it cannot be used in situations where we have N different domains
of interest. If we were to use cycleGAN to deal with all N domains, then we would
need N (N − 1) different generators, which would be prohibitive.

To consider multiple domains effectively, starGAN [50] was proposed. In starGAN,
a single generator–discriminator set is used. Formally put, the mapping in starGAN is
described as

x̂t = G(xi;t), (12.16)

where the single generator G is conditioned with t , and the subscript from Eq. (12.14)
is dropped. Here, the generator knows the target domain t to be estimated by a mask
vector that is concatenated with the input image. However, starGAN is also not a
perfect fit for image imputation. Although it is able to exploit multiple domains with
a single generator, it uses a single input to estimate the missing component, when it
would be much more plausible to use multiple information from different domains
synergistically.

12.5.1 Collaborative GAN

Accordingly, it would be beneficial to design a mapping to consider all other input
images for missing data imputation. This idea was first proposed in collaborativeGAN
(collaGAN) [9, 10]. A conceptual diagram of collaGAN is depicted in Fig. 12.5, where
an example of synthesizing MR contrast using collaGAN is shown.

In this subsection, we formally address the collaGAN framework, handling multi-
ple input domains to generate more feasible image imputation. For simplicity in expla-
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Figure 12.5 Conceptual diagram of collaGAN. © [2020] Nature Machine Intelligence, vol. 2,
no. 1, pp. 34–42. Springer Nature. CollaGAN enables flexible multi-domain imputation within
a single GAN architecture.

nation, we will assume that we have N = 4 domains: a,b,c, and d. When the target
domain is a, and a target image xa exists, collaGAN tries to estimate a collaborative
mapping from the set of images that exist in different domains: {xa}C ={xb,xc,xd}.
Here, the superscript C denotes the complementary set. More properly, we have

x̂t = G({xt }C;t), (12.17)

where t ∈ {a,b,c,d} is the corresponding target domain for each missing image.
Notice that there are N different combinations of multiple inputs and single outputs.
These combinations are randomly chosen at the training stage so that the generator
learns to synergistically combine multiple images from different domains to synthe-
size the missing image. In the following, we review the overall flow of collaGAN and
the training methodology.

Multiple Cycle-Consistency Loss
In cycleGAN, the cycle-consistency loss is used to impose a constraint that the map-
ping between the two domains should be the inverse of each other. In collaGAN, this
cycle-consistency loss is redefined so that the inverse mapping can be achieved in any
other domains. Specifically, let us assume that we have generated an output in domain
a, denoted as x̂a , with the generator G, as shown in the middle panel of Fig. 12.6.
Subsequently, we can define three different inverse mappings:

https://doi.org/10.1017/9781009042529.016 Published online by Cambridge University Presshttps://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009042529.016
Downloaded from https://www.cambridge.org/core. Bilkent University Library, on 24 Oct 2023 at 08:05:30, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1017/9781009042529.016
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009042529.016
https://www.cambridge.org/core
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x̃b|a = G({x̂a,xc,xd};b) (12.18)

x̃c|a = G({x̂a,xb,xd};c) (12.19)

x̃d|a = G({x̂a,xb,xc};d). (12.20)

Then, we can calculate the multiple cycle-consistency loss for domain a as the
following:

�mcc,a =
∥∥xb − x̃b|a

∥∥
1 +

∥∥xc − x̃c|a
∥∥+ ∥∥xd − x̃d|a

∥∥
1 . (12.21)

This is illustrated in the middle panel of Fig. 12.6 indexed with �mcc and a bidirectional
arrow. Generally, �mcc reads

�mcc,t =
∑
t ′ �=t

∥∥xt ′ − x̃t ′|t
∥∥

1 . (12.22)

In the original paper [9], the authors claim to use a more sophisticated cycle-
consistency loss on top of the �1 loss, coined the structural similarity index loss. The
new quantity directly minimizes the structural similarity index (SSIM), which leads to
a more feasible output:

x̃t ′|t = G({x̂t }C;t ′). (12.23)

Interested readers are referred to [9].

Discriminator Loss
Now that the cycle-consistency loss has been defined, we are ready to define the
discriminator loss designed for multi-domain image imputation. In most GAN archi-
tectures, the role of the discriminator is to learn to tell how realistic the given image
is. However, there is one more role of the discriminator in collaGAN. It also has to
classify to which domain the given image belongs. A schematic diagram of the colla-
GAN discriminator is depicted in Fig. 12.6 (left) and (right). Within the discriminator
D we see two components: Dgan and Dclsf . Here, Dgan refers to the adversarial loss,
defined analogously to the other GAN architectures, and Dclsf refers to the domain
classification loss. Before jointly training the generator and the discriminator, the
domain classifier part of the discriminator, Dclsf , is trained with only real images:

�real
clsf (Dclsf ) = Ext [− log(Dclsf (t;xt ))], (12.24)

where (Dclsf (t;xt )) outputs a probability value of xt belonging to the class t . Training
Dclsf prior to jointly training G and D stabilizes training by building a strong clas-
sifier to provide a better guide to the generator. At the actual joint training stage, the
generated fake images are also used to update the parameters in G with the following
loss function:

�
f ake
clsf (G) = Ex̂t |t [− log(Dclsf (t;x̂t |t ))]. (12.25)

The other part of the discriminator minimizes the LSGAN loss [20], known to stabilize
the training process while preventing mode collapse. The parameters of Dgan are
updated by minimizing
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�gan(Dgan) = Ext [(Dgan(xt )− 1)2]+ Ex̃t |t [(Dgan(x̃t |t ))2], (12.26)

whereas the parameters of G are updated by minimizing

�gan(G) = Ex̃t |t [(Dgan(x̃t |t )− 1)2]. (12.27)

12.5.2 MR Contrast Synthesis using CollaGAN

As discussed in earlier sections, different combinations of MR contrast images deliver
diverse information about the patient being scanned. Among them, T1-weighted
(T1), T2-weighted (T2), gadolinium-contrast-enhanced T1-weighted (T1Gd), T2 fluid-
attenuated inversion recovery (T2F) are canonical examples of MR contrasts that are
widely used in clinical situations. Full acquisition of different MR contrast images
would be the most beneficial, but in most cases this is hard to achieve: acquiring
a complete set of MR contrast images requires a painfully long scanning time, and
the protocols among different medical centers vary. Even if a complete set has been
acquired, systematic and operational errors have often corrupted one of the images.
Subsequently, such images cannot be used, which eventually leads to statistical errors
that hinder exact analysis [48].

Recently, a synthetic MRI technique called magnetic resonance image compilation
(MAGiC, GE Healthcare) [51] has grown in popularity owing to its ability to generate
multiple contrast MR images using the newly developed multidynamic multiecho
(MDME) scan. With MAGiC, one can generate different contrast images such as
T1,T2, and T2-FLAIR, but it is known to generate substantial artifacts [51–53]. For
example, it is known that the SNR is degraded with MAGiC FLAIR in comparison
with conventional FLAIR, and the flow-related artifacts are enhanced. Hence, even
after the acquisition of the MAGiC sequence, additional MR scans need to be incor-
porated to confirm the diagnosis, which eventually increases time and cost.

Instead, when we have erroneous acquisition among one of the contrast images,
we can directly use collaGAN to impute the missing data, indicated by the question
marks in Fig. 12.7. In the figure we can see that collaGAN is indeed able to impute
the missing data in any given domain: MAGIC T1-FLAIR, T2, MAGIC T2-FLAIR,
and T2-FLAIR. It is notable that by jointly combining the information from multiple
domains, collaGAN is able to provide more accurate results compared with methods
such as cycleGAN or starGAN which utilize a single-input domain.

The versatility of collaGAN readily extends to the imputation of pathological data.
For example, in Fig. 12.8, we see the results of reconstruction with visible lesions.
In (a), collaGAN is able to perform reconstruction even with an erroneous MAGiC
T2-FLAIR image, showing a hyperintensity signal of the cerebrospinal fluid (CSF).
Abnormal signals are also well reconstructed in (b). In (c), while the MAGiC T2-
FLAIR image does not capture the hyperintensity signal, indicated by the arrow,
collaGAN is able to reconstruct the signal. In (d), we see that collaGAN again corrects
for the error induced in MAGiC T2-FLAIR. From the reconstruction results, it is clear
that collaGAN can accurately reconstruct missing MR contrasts.
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Figure 12.7 MR contrast imputation results using different methods. © [2020] Nature Machine
Intelligence, vol. 2, no. 1, pp, 34–42. Springer Nature.

Assessing the Importance of MR Contrast
Interesting enough, this also leads to a fundamental question – can collaGAN syn-
thesize any contrast? If not, what are the conditions required for collaGAN to per-
form well? In fact, this question was rigorously investigated in [10]. Specifically,
by estimating specific contrasts one by one, it is possible to verify which contrasts
can or cannot be generated through the imputation process, and ultimately which
contrasts are irreplaceable. To ponder this question, the present authors performed
a quantitative study by comparing the segmentation performance of the synthesized
MR contrasts, replacing real contrast images with the synthesized images, one by one.
If the segmentation performance did not drop even with the synthesized image, then it
would mean that the contrast was replaceable. On the other hand, if there were a suffi-
cient performance drop, that would mean that such contrasts were irreplaceable. From
the results, the authors concluded that T1, T2, and T2F images are replaceable with
synthetic images from collaGAN, which shows almost no difference in performance.
However, a clear distinction was seen for a gadolinium contrast agent injected T1-
weighted image. From the quantitative results, we can again verify that Gd-enhanced
contrasts are crucial for segmentation performance, and they are not replaceable with
collaGAN imputation.

12.6 Summary and Outlook

For both unconditional synthesis and conditional synthesis, GANs have shown to be
the perfect fit to such means thanks to their ability to learn probability distributions.
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Figure 12.8 MR contrast imputation results on pathological data using collaGAN. © [2020]
Nature Machine Intelligence, vol. 2, no. 1, pp. 34–42. Springer Nature.

For unconditional synthesis, the objective is to stochastically generate MR images
of target contrast. Conditional synthesis refers to the case where the model is to
learn a nonlinear mapping to the different MR tissue contrasts without altering the
physiological information. Furthermore, by merging collaborative information about
multiple contrast images, missing data imputation among many different domains is
also effectively solved with GANs. Although promising results have been shown,
developments in the area are still at an early stage. Interesting research directions
have been proposed in previous work, which include application of the more advanced
methods and rigorous validation in clinical settings. In effect, MRI image synthesis
techniques should be able to reduce the burden of costly MR scans, benefiting both
patients and hospitals.
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