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Learning-Based Compressive MRI
Baran Gözcü , Rabeeh Karimi Mahabadi, Yen-Huan Li, Efe Ilıcak, Tolga Çukur ,

Jonathan Scarlett , and Volkan Cevher

Abstract— In the area of magnetic resonance imaging
(MRI), an extensive range of non-linear reconstruction algo-
rithms has been proposed which can be used with gen-
eral Fourier subsampling patterns. However, the design of
these subsampling patterns has typically been considered
in isolation from the reconstruction rule and the anatomy
under consideration. In this paper, we propose a learning-
based framework for optimizing MRI subsampling patterns
for a specific reconstruction rule and anatomy, consider-
ing both the noiseless and noisy settings. Our learning
algorithm has access to a representative set of training
signals, and searches for a sampling pattern that performs
well on average for the signals in this set. We present a
novel parameter-free greedy mask selection method and
show it to be effective for a variety of reconstruction rules
and performance metrics. Moreover, we also support our
numerical findings by providing a rigorous justification of
our framework via statistical learning theory.

Index Terms— Magnetic resonance imaging,
compressive sensing, learning-based subsampling, greedy
algorithms.

I. INTRODUCTION

MAGNETIC resonance imaging (MRI) serves as a crucial
diagnostic modality for scanning soft tissue in body

parts such as the brain, knee, and spinal cord. While early
MRI technology could require over an hour of scan time to
produce diagnostic-quality images, subsequent advances have
led to drastic reductions in the scan time without sacrificing
the imaging quality.

The application of MRI has served as a key motivation for
compressive sensing (CS), a modern data acquisition technique
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for sparse signals. The theory and practice of CS for MRI have
generally taken very different paths, with the former focusing
on sparsity and uniform random sampling of the Fourier space,
but the latter dictating the use of variable-density subsampling.
Common to both viewpoints, however, is the element of non-
linear decoding via optimization formulations.

In this paper, we propose a learning-based framework for
compressive MRI that is both theoretically grounded and
practical. The premise is to use training signals to optimize
the subsampling specifically for the setup at hand.

In more detail, we propose a novel greedy algorithm for
mask optimization that can be applied to arbitrary reconstruc-
tion rules and performance measures. This mask selection
algorithm is parameter-free, excluding unavoidable parameters
of the reconstruction methods themselves. We use statistical
learning theory to justify the core idea of optimizing the
empirical performance on training data for the sampling design
problem. In addition, we provide numerical evidence that
our framework can find good sampling patterns for different
performance metrics such as peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM) index [1], and for a broad
range of decoders, from basis pursuit and total variation to
neural networks and BM3D. Since our framework can be
applied to arbitrary decoders, we also anticipate that it can
benefit future decoding rules.

Organization of the Paper: In Section II, we introduce
the compressive MRI problem and outline the most relevant
existing works, as well as summarizing our contributions.
In Section III, we introduce our learning-based frame-
work, along with its theoretical justification. In Section IV,
we demonstrate the effectiveness of our approach on a variety
of data sets, including comparisons to existing approaches.
Conclusions are drawn in Section V.

II. BACKGROUND

A. Signal Acquisition and Reconstruction

In the compressive sensing (CS) problem [2], one seeks
to recover a sparse vector via a small number of linear
measurements. In the special case of compressive MRI, these
measurements take the specific form of subsampled Fourier
measurements, described as follows:

b = P��x + w, (1)

where � ∈ Cp×p is the Fourier transform operator applied
to the vectorized image,1 P� : Cp → Cn is a subsampling

1The original image may be 2D or 3D, but we express it in its vectorized
form for convenience.
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operator that selects the rows of � indexed by the set �, with
|�| = n, and w ∈ Cn is possible additive noise. We refer to
� as the sampling pattern or mask.

Given the measurements b (along with knowledge of �),
a reconstruction algorithm (also referred to as the decoder)
forms an estimate x̂ of x. This algorithm is treated as a general
function, and is written as follows:

x̂ = g(�, b). (2)

A wide variety of decoding techniques have been proposed
for compressive MRI; here we present a few of the most
widely-used and best-performing techniques, which we will
pursue in the numerical experiments in Section IV.

In the general CS problem, decoders based on convex
optimization have received considerable attention, both due to
their theoretical guarantees and practical performance. In the
noiseless setting (i.e., w = 0), a particularly notable choice is
basis pursuit (BP) [2]:

x̂ = arg min
z : b=P��z

��z�1 (3)

where � is a sparsifying operator such as the wavelet or shear-
let transform. A similar type of convex optimization formula-
tion that avoids the need for the sparsifying operator is total
variation (TV) minimization:

x̂ = arg min
z : b=P��z

�z�TV, (4)

where �z�TV is the total variation norm.
For the specific application of MRI, heuristic reconstruction

algorithms have recently arisen that can outperform meth-
ods such as BP and TV, despite their lack of theoretical
guarantees. A state-of-the-art reconstruction algorithm was
recently proposed in [3] based on the block matching and 3D
filtering (BM3D) denoising technique [4] that applies principal
component analysis (PCA) to patches of the image. At a high
level, the algorithm of [3] alternates between denoising using
BM3D, and reconstruction using regularized least squares
formulations. We refer the reader to [3] for further details,
and to Section IV for our numerical results.

Following their enormous success in machine learning
applications, deep neural networks have also been proposed
for MRI reconstruction. We consider the approach of [5],
which uses a cascade of convolution neural networks (CNNs)
interleaved with data consistency (DC) units. The CNNs serve
to perform de-aliasing, and the DC units serve to enforce
data consistency in the reconstruction. The deep network is
trained by inputing the subsampled signals and treating the
full training signal as the desired reconstruction. We refer the
reader to [5] for further details, and to Section IV for our
numerical results.

Among the extensive existing literature, other relevant
works include [6] and [7], where compressive sensing is uni-
fied with parallel MRI. In [8], a matrix completion frame-
work is proposed for the parallel MRI setting. In [9]–[12],
dictionary learning and faster transform learning methods are
shown to provide considerably better quality of reconstructions
compared to nonadaptive methods. In [13]–[16], low rank

models are used for improved results in dynamic MRI setting,
for which dictionary-based approaches are also presented
in [17] and [18]. Another notable work in the dynamic setting
is [19], which, in a compressive sensing framework, general-
izes the previous work that exploits spatiotemporal correlations
for improved frame rate [20]. Patient-adaptive methods for
dynamic MRI also exist in the literature [21], [22]. A Bayesian
approach is taken in [23] and [24] for compressive MRI
applications, whereas in [25], Bayesian and dictonary learning
approaches are combined.

In [26], a deep convolutional network is used to learn the
aliasing artefacts, providing a more accurate reconstruction in
the case of uniform sampling. In [27], this approach is applied
to the radial acquisition setting. In [28], a deep network is
used to train the transformations and parameters present in an
regularized objective function. Moreover, in [29], a framework
based on generative adversarial networks is applied for an
improved compressive MRI performance, whereas in [30],
a convolutional network is trained for faster acquisition and
reconstruction for dynamic MRI setting.

B. Subsampling Pattern Design

Generally speaking, the most popular approaches to design-
ing � for compressive MRI make use of random variable-
density sampling according to a non-uniform probability
distribution [31]. The random sampling is done in a manner
that favors taking more samples at low frequencies. Some
examples include variable-density Poisson disk sampling [32],
multi-level sampling schemes [33], [34], pseudo-2D random
sampling [35], and variable density with continuous and block
sampling models [36]–[38].

While such variable-density approaches often perform well,
they have notable limitations. First, they typically require
parameters to be tuned (e.g., the rate of decay of probability
away from the center). Second, it is generally unclear which
particular sampling distribution will be most effective for a
given decoding rule and anatomy. Finally, the very idea of
randomization is questionable, since in practice one would like
to design a fixed sampling pattern to use across many subjects.

Recently, alternative design methods have been proposed
that make use of fully sampled training data (i.e., training
signals). In [39]–[41], the training data is used to construct a
sampling distribution, from which the samples are then drawn
randomly. In [42] and [43], a single training image is used
at a time to choose a row to sample, and in [44] the rows
are chosen based on a mutual information criterion. Much
like the above-mentioned randomized variable-density sam-
pling approaches, these existing adaptive algorithms contain
parameters for their mask selection whose tuning is non-
trivial. Moreover, to our knowledge, none of these works
have provided theoretical justifications of the mask selection
method. On the other hand, except for [43], these algorithms
do not optimize the sampling pattern for a given general
decoder. We achieve this via a parallelizable greedy algorithm
that implements the given decoder on multiple training images
at each iteration of the algorithm until the desired rate is
attained.
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A particularly relevant prior work is that of [45], in which
we proposed the initial learning-based framework that moti-
vates the present paper. However, the focus in [45] is on a
simple linear decoder and the noiseless setting, and the crucial
aspects of non-linear decoding and noise were left as open
problems.

An alternative approach to optimizing subsampling based
on prior information is given in [46]. The idea therein is
that if a subject requires multiple similar scans, then the
previous scans can be used to adjust both the sampling and the
decoding of future scans. This is done using the randomized
variable-density approach, with the probabilities adjusted to
favor locations where the previous scans had more energy.
In [47], a proposed informative random sampling approach
optimizes the sampling of subsequent frames of dynamic MRI
data based on previous frames in real time. In [48], a highly
undersampled pre-scan is used to learn the energy distribution
of the image and design the sampling prior to the main scan.

A recent comparative study [49] showed that the approaches
that directly use training data perform better than the purely
parametric (e.g., randomized variable-density) methods.

Other subsampling design works include the following:
In [50], a generalized Rosetta shaped sampling pattern is used
for compressive MRI, and in [51] a random-like trajectory
based on higher order chirp sequences is proposed. Radial
acquisition designs have been proposed to improve the per-
formance of compressive MRI in the settings of dynamic
MRI [52] and phase contrast MRI [53]. In addition, a recent
work [54] considered non-Cartesian trajectory design for high
resolution MRI imaging at 7T (Tesla).

C. Theory of Compressive Sensing

The theory of CS has generally moved in very different
directions to the above practical approaches. In particular,
when it comes to subsampled Fourier measurements, the vast
majority of the literature has focused on guarantees for
recovering sparse signals with uniform random sampling [55],
which performs very poorly in practical imaging applications.

A recent work [33] proposed an alternative theory of CS
based on sparsity in levels, along with variable-density random
sampling and BP decoding. As we outline below, we adopt
an entirely different approach that avoids making any specific
structural assumptions, yet can exploit even richer structures
beyond sparsity and its variants.

D. Our Contributions

In this paper, we propose a novel learning-based framework
for designing subsampling patterns, based on the idea of
directly maximizing the empirical performance on training
data. We adopt an entirely different theoretical viewpoint
to that of the existing CS literature; rather than placing
structural assumptions (e.g., sparsity) on the underlying signal,
we simply think of the training and test signals as coming
from a common unknown distribution. Using connections with
statistical learning theory, we adopt a learning method that
automatically extracts the structure inherent in the signal, and
optimizes � specifically for the decoder at hand.

While our framework is suited to general CS scenarios,
we focus on the application of MRI, in which we observe
several advantages over the above existing approaches:
• While our previous work [45] exclusively considered a

simple linear decoder, in this paper we consider targeted
optimization for general non-linear decoders;

• We present a non-trivial extension of our theory and
methodology to the noisy setting, whereas [45] only
considered the noiseless case;

• We directly optimize for the performance measure at hand
(e.g. PSNR), as opposed to less direct measures such as
mutual information. Similarly, our framework permits the
direct optimization of bottom-line costs (e.g., acquisition
time), rather than auxiliary cost measures (e.g., number
of samples);

• We can directly incorporate practical sampling con-
straints, such as the requirement of sampling entire rows
and/or columns rather than arbitrary patterns;

• Parameter tuning is not required;
• Our learning algorithm is highly parallelizable, rendering

it feasible even when the dimension and/or the number
of training images is large;

• We demonstrate the effectiveness of our approach on
several real-world data sets, performing favorably against
existing methods.

III. LEARNING-BASED FRAMEWORK

A. Overview
Our learning-based framework is outlined as follows:
• We have access to a set of fully-sampled training signals

x1, . . . , xm that are assumed to be representative of the
unknown signal of interest x.

• We assume that the decoder (2) is given. This decoder
is allowed to be arbitrary, meaning that our framework
can be used alongside general existing reconstruction
methods, and potentially also future methods.

• For any subsampling pattern �, we can consider its
empirical average performance on the training signals:

1

m

m∑

j=1

η�(x j ), (5)

where η�(x) is a performance measure (e.g., PSNR)
associated with the signal x and its reconstruction when
the sampling pattern is �. If x1, . . . , xm are similar to x,
we should expect that any � such that (5) is high will
also perform well on x.

• While maximizing (5) is computationally challenging in
general, we can use any preferred method to seek an
approximate maximizer. We will pay particular attention
to a greedy algorithm, which is parameter-free and satis-
fies a useful nestedness property.

We proceed by describing these points in more detail. For
convenience, we initially consider the noiseless setting,

b = P��x, (6)

and then turn to the noisy setting in Section III-F.
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B. Preliminaries

Our broad goal is to determine a good subsampling pattern
� ⊆ {1, . . . , p} for compressive MRI. To perform this task,
we assume that we have access to a set of training signals
x1, . . . , xm , with x j ∈ Cp . The idea is that if an unseen signal
has similar properties to the training signals, then we should
expect the learned subsampling patterns to generalize well.

In addition to the reconstruction rule g of the form (2),
the learning procedure has knowledge of a performance
measure, which we would like to make as high as possible
on the unseen signal. We focus primarily on PSNR in our
experimental section, while also considering the SSIM index.

For implementation reasons, one may wish to restrict the
sampling patterns in some way, e.g., to contain only hori-
zontal and/or vertical lines. To account for such constraints,
we assume that there exists a set S of subsets of {1, . . . , p}
such that the final sampling pattern must take the form

� =
�⋃

j=1

Sj , Sj ∈ S (7)

for some � > 0. If S = {{1}, . . . , {p}}, then we recover
the setting of [45] where the subsampling pattern may be
arbitrary. However, arbitrary sampling patterns are not always
feasible; for instance, masks consisting of only horizontal
and/or vertical lines are often considered much more suited
to practical implementation, and hence, it may be of interest
to restrict S accordingly.

Finally, we assume there exists a cost function c(�) ≥ 0
associated with each subsampling pattern, and that the final
cost must satisfy

c(�) ≤ � (8)

for some � > 0. We will focus primarily on the case that the
cost is the total number of indices in � (i.e., we are placing a
constraint on the sampling rate), but in practical scenarios one
may wish to consider the ultimate underlying cost, such as the
scan time. We assume that c(·) is monotone with respect to
inclusion, i.e., if �1 ⊆ �2 then c(�1) ≤ c(�2).

C. Theoretical Motivation via Statistical Learning Theory

Before describing our main algorithm, we present a the-
oretical motivation for our learning-based framework. To do
so, we think of the underlying signal of interest x as coming
from a probability distribution P . Under any such distribution,
we can write down the indices with the best average perfor-
mance:

�∗ = arg max
�∈A

EP
[
η�(x)

]
, (9)

where A is the set of feasible � according to c(·), �, and S,
and we define

η�(x) = η(x, x̂) (10)

with x̂ = g(�, b) and b = P��x.
Unfortunately, the rule in (9) is not feasible in practice, since

one cannot expect to know P (e.g., one cannot reasonably
form an accurate probability distribution that describes a

brain image). However, if the training signals x1, . . . , xm are
also independently drawn from P , then there is hope that the
empirical average is a good approximation of the true average.
This leads to the following selection rule:

�̂ = arg max
�∈A

1

m

m∑

j=1

η�(x j ). (11)

The rule (11) is an instance of empirical risk minimization in
statistical learning theory. While finding the exact maximum
can still be computationally hard, this viewpoint will never-
theless dictate that we should seek indices � ∈ A such that
1
m

∑m
j=1 η�(x j ) is high.

To see this more formally, we consider the following
question: If we find a set of indices � ∈ A with a good
empirical performance 1

m

∑m
j=1 η�(x j ), does it also provide

good performance E[η�(x)] on an unseen signal x? The
following proposition answers this question in the affirmative
using statistical learning theory.

Proposition 1: Consider the above setup with a perfor-
mance measure normalized so that η(x, x̂) ∈ [0, 1].2 For any
δ ∈ (0, 1), with probability at least 1− δ (with respect to the
randomness of x1, x2, . . . , xm), it holds that

∣∣∣∣∣∣
1

m

m∑

j=1

η�(x j )− EP [η�(x)]

∣∣∣∣∣∣
≤

√
1

2m
log

(
2 |A|

δ

)
,

simultaneously for all � ∈ A.
The proof is given in the appendix. We see that as long as m

is sufficiently large compared to |A|, the average performance
attained by any given � ∈ A on the training data is an accurate
estimate of the true performance. This guarantee is with
respect to the worst case, regarding all possible probability
distributions P; the actual performance could exceed this
guarantee in practice.

D. Greedy Algorithm

While finding the exact maximizer in (11) is challenging
in general, we can seek to efficiently find an approximate
solution. There are several possible ways to do this, and
Proposition 1 reveals that regardless of how we come across
a mask with better empirical performance, we should favor
it. In this subsection, we present a simple greedy approach,
which is parameter-free in the sense that no parameter tuning
is needed for the mask selection process once the decoder is
given (though the decoder itself may still have tunable para-
meters). The greedy approach also exhibits a useful nestedness
property (described below).

At each iteration, the greedy procedure runs the decoder g
with each element of S that is not yet included in the mask, and
adds the subset S ∈ S that increases the performance function
most on average over the training images, normalized by the
cost. The algorithm stops when it is no longer possible to add

2As a concrete example, suppose we are interested in the squared error
�x − x̂�22. If the input is normalized to �x�22 = 1, then it can be shown that
any estimate x̂ only improves if it is scaled down such that �x̂�22 ≤ 1. It then
follows easily that η(x, x̂) = 1− 1

4�x − x̂�22 always lies in [0, 1].
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new subsets from S without violating the cost constraint. The
details are given in Algorithm 1.

Algorithm 1 Greedy Mask Optimization
Input: Training data x1, . . . , xm , reconstruction rule g, sam-
pling subsets S, cost function c, maximum cost �
Output: Sampling pattern �
1: �← ∅;
2: while c(�) ≤ � do
3: for S ∈ S such that c(� ∪ S) ≤ � do
4: �� = � ∪ S
5: For each j , set b j ← P���x j , x̂ j ← g(��, b j )
6: η(��)← 1

m

∑m
j=1 η(x j , x̂ j )

7: �← � ∪ S∗, where

S∗ = arg max
S : c(�∪S)≤�

η(� ∪ S)− η(�)

c(� ∪ S)− c(�)

8: return �

An important feature of this method is the nestedness
property that allows one to immediately adapt for different
costs � (e.g., different sampling rates). Specifically, one can
record the order in which the elements are included in �
during the mask optimization for a high cost, and use this
to infer the mask corresponding to lower costs, or to use as
a starting point for higher costs. Note that this is not possible
for most parametric methods, where changing the sampling
rate requires one to redo the parameter tuning.

We briefly note that alternative greedy methods could easily
be used. For instance:
• One could start with � = {1, . . . , p} (i.e., sampling the

entire Fourier space) and then remove samples until a
feasible pattern is attained;

• One could adopt a hybrid approach in which samples are
both added and removed iteratively until some conver-
gence condition is met.

In our experiments, however, we focus in the procedure in
Algorithm 1, which we found to work well.

In another related work [43], an iterative approach is taken
in which only a single nonlinear reconstruction is implemented
in each iteration of mask selection, starting with an initial mask
whereas we run separate reconstructions for each candidate to
be added to the sampling pattern, starting with the empty set.
Moreover, [43] makes use of several parameters, such as the
number of the regions with higher errors to which the samples
are moved iteratively, the size of these regions, the power of
the polynomial used for a weighting function, etc., which need
to be tuned for each experiment. Our greedy algorithm has the
advantage of avoiding such heuristics and additional parame-
ters. While the proposed algorithm requires a larger number
of computations for mask selection, these computations can
be easily parallelized and performed efficiently.

E. Parametric Approach With Learning

An alternative approach is to generate a number of candidate
masks �1, . . . , �L using one or more parametric variable-
density methods (possibly with a variety of different choices

of parameters), and then to apply the learning-based idea
to these candidate masks: Choose the one with the best
empirical performance on the training set. While similar
ideas have already been used when performing parameter
sweeps in existing works (see [39]), our framework provides
a more formal justification to why the empirical performance
is the correct quantity to optimize. The details are given
in Algorithm 2, where we assume that all candidate masks
are feasible according to the sampling subsets S and cost
function c.

Algorithm 2 Choosing From a Set of Candidate Masks
Input: Training data x1, . . . , xm , reconstruction rule g, candi-
date masks �1, . . . , �L

Output: Sampling pattern �
1: for � = 1, . . . , L do
2: For each j , set b j ← P���x j , x̂ j ← g(��, b j )
3: η� ← 1

m

∑m
j=1 η(x j , x̂ j )

4: �← ��∗ , where �∗ = arg max�=1,...,L η�

5: return �

F. Noisy Setting

So far, we have considered the case that both the acquired
signal b and the training signals x1, . . . , xm are noiseless.
In this subsection, we consider a noisy variant of our setting:
The acquired signal is given by

b = P��x + w (12)

for some noise term w ∈ Cp , and the learning algorithm does
not have access to the exact training signals x1, . . . , xm , but
instead to noisy versions z1, . . . , zm , where

z j = x j + v j , j = 1, . . . , m (13)

with v j representing the noise.
We observe that the selection rule in (11) can no longer

be used, since the learning algorithm does not have direct
access to x1, . . . , xm . The simplest alternative is to substitute
the noisy versions of the signals and use (11) with z j in
place of x j . It turns out, however, that we can do better if
we have access to a denoiser ξ(z) that reduces the noise level.
Specifically, suppose that

ξ(z) = x j + ṽ j (14)

for some reduced noise ṽ j such that E[�̃v j�] ≤ E[�v j�].
We then propose the selection rule

�̂ = arg max
�∈A

1

m

m∑

j=1

η(x j + ṽ j , x̂(P��(x j + v j )), (15)

where x̂(b) denotes the decoder applied to b. Note that we still
use the noisy training signal in the choice of b; by doing so,
we are learning how to denoise, which is necessary because
the unseen test signal is itself noisy as per (12).

To understand how well the above rule generalized to
unseen signals, we would like to compare the empirical
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performance on the right-hand side of (15) to the true average
performance on an unseen signal, defined as

ηnoisy(�) = E
[
η(x, x̂)

]
(16)

with x̂ = g(�, b) and b = P��x + w. The following
proposition quantifies this comparison.

Proposition 2: Consider the above noisy setup with w and
{v j }mj=1 having independent Gaussian entries of the same vari-
ance, and a performance measure η(x, x̂) ∈ [0, 1] that satisfies
the continuity assumption |η(x, x̂)−η(x�, x̂)| ≤ L�x−x��2 for
all x, x� and some L > 0. For any δ ∈ (0, 1), with probability
at least 1 − δ (with respect to the randomness of the noisy
training signals), it holds that
∣∣∣∣∣∣

1

m

m∑

j=1

η(x j + ṽ j , x̂(P��(x j + v j ))− ηnoisy(�)

∣∣∣∣∣∣

≤ LE[�̃v�2] +
√

1

2m
log

(
2 |A|

δ

)
, (17)

simultaneously for all � ∈ A, where ṽ j = ξ(v j ) is the
effective noise remaining in the j -th denoised training signal,
and ṽ has the same distribution as any given ṽ j .

The proof is given in the appendix. We observe that the
second term coincides with that of the noiseless case in
Proposition 1, whereas the first term represents the additional
error due to the residual noise after denoising. It is straight-
forward to show that such a term is unavoidable in general.3

Hence, along with the fact that more training signals leads
to better generalization, Proposition 2 reveals the intuitive fact
that the ability to better denoise the training signals leads
to better generalization. In particular, if we can do perfect
denoising (i.e., �̃v j� = 0) then we get the same generalization
error as the noiseless case.

In Algorithm 3, we provide the learning-based procedure
with an arbitrary denoising function ξ . Note that if we choose
the identity function ξ(z) = z, then we reduce to the case
where no denoising is done.

Algorithm 3 Learning-Based Mask Selection With Denoising
Input: Noisy training data z1, . . . , zm , reconstruction
rule g, denoising algorithm ξ(z), and either the triplet
(S, c, �) or candidate masks �1, . . . , �L

Output: Sampling pattern �
1: x�j ← ξ(z j ) for j = 1, . . . , m
2: Select � using Algorithm 1 or 2 with η(x�j , x̂(P��z j ))

replacing η(x j , x̂(P��x j ) throughout.
3: return �

IV. NUMERICAL EXPERIMENTS

In this section, we provide numerical experiments
demonstrating that our learning-based framework provides

3For instance, to give an example where the generalization error must
contain the E[�v�2] term, it suffices to consider the �2-error in the trivial
case that x = x1 = . . . = xm with probability one, and x̂ also outputs the
same deterministic signal.

high-performing sampling patterns for a diverse range of
reconstruction algorithms. Our simulation code and data are
publicly available online.4

A. Implementation Details

Reconstruction rules. We consider the decoders described
in Section II-A, which we refer to as BP, TV, BM3D, and NN
(i.e., neural network). For BP in (3), we let the sparsifying
operator � be the shearlet transform [56], and for both BP
and TV, we implement the minimization using NESTA [57],
for which we set the maximum number iterations to 20000,
the denoising parameter to � = 0, the tolerance value and
the smoothing parameter to μ = 10−5, and the number of
continuation steps to T = 1.

For BM3D, we use the code available in [3]. We take the
observation fidelity parameter α = 0, the number of outer
iterations J = 20 and the regularization parameters as βmax =
200 and βmin = 0.01. We also use a varying number of inner
iterations between 1 and 10 as described in [3].

For the NN decoder, we use the network structure from [5],
only slightly modifying certain parameters. We choose depth
of the architecture as nd = 3 and depth of the cascade as
nc = 5. We set the mini-batch size for training to 20. We use
the same training signals for learning indices and tuning the
network weights. Since it is difficult to optimize these jointly,
we perform alternating optimization: Initialize the weights, and
then alternate between learning indices with fixed weights, and
learning weights with fixed indices. We perform up to three
iterations of this procedure, which we found to be sufficient
for convergence.

As was done in [5], we initialize the network weights using
the initialization of He et al. [58], and perform network weight
optimization using the Adam algorithm [59] with step size
α = 10−2 and decay rates β1 = 0.9 and β2 = 0.999.
Moreover, we apply an additional �2 weight regularization
penalty of 10−6. Each time we train the network, we run the
training for 7000 epochs (i.e., passes over the training data).
We use the Python implementation available in [5].

In principle, it may sometimes be preferable to change the
reconstruction parameters as the greedy algorithm adds indices
and increases the current sampling rate. However, we did not
find such an approach to provide further benefit in the present
setting, so here we stick to the above approach where the
reconstruction parameters remain fixed.

Mask selection methods. In addition to the greedy method
in Algorithm 1, we consider parametric randomized variable-
density methods with learning-based optimization according
to Algorithm 2; the details are provided in the relevant
subsections below. Moreover, we consider the following two
baselines from the existing literature:
• (Coherence-based) We consider the parametric approach

of [31] with parameters specifying (i) the size of a fully-
sampled region at low frequencies; and (ii) the polyno-
mial rate of decay of sampling at higher frequencies.
As suggested in [31], we choose the parameters to opti-
mize an incoherence function, meaning that no training

4https://lions.epfl.ch/lb-csmri
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data is used. The minimization is done using Monte Carlo
methods, and we do this using the code used in [31]
available online.

• (Single-image) We consider the approach of [41] in which
only a single training image is used. Specifically, this
image determines a probability density function where the
probability is proportional to energy, and then the samples
are randomly selected by drawing from this distribution.

Data sets. The MRI data used in the following subsections
was acquired on a 3T MRI system (Magnetom Trio Scanner,
Erlangen, Germany). The protocols were approved by the
local ethics committee, and all subjects gave written informed
consent.

The data set used in the first three experiments (subsections)
below consists of 2D T1-weighted brain scans of seven healthy
subjects, which were scanned with a FLASH pulse sequence
and a 12-channel receive-only head coil. In our experiments,
we use 20 slices of sizes 256×256 from five such subjects (two
for training, three for testing). Data from individual coils was
processed via a complex linear combination, where coil sensi-
tivities were estimated from an 8×8 central calibration region
of k-space [60]. The acquisition used a field of view (FOV)
of 220 × 220 mm2 and a resolution of 0.9 × 0.7 mm2. The
slice thickness was 4.0 mm. The imaging protocol comprised
a flip angle of 70◦, a TR/TE of 250.0/2.46 ms, with a scan
time of 2 minutes and 10 seconds.

The data set used in subsection E below consists of angio-
graphic brain scans of five healthy subjects acquired with
12-channel receive-only head coil and 20 slices from each
are used in our experiments (two subjects for training, three
subjects for testing). The size of the slices is 256×256. A 3D
TOF sequence was used with FOV of 204×204×51 mm3,
0.8×0.8×0.8 mm3 resolution, flip angle of 18◦, magnetization-
transfer contrast, a TR/TE of 47/4.6 ms, and a scan time
of 16 min 25 sec.

B. Comparison to Baselines

We first compare to the above-mentioned baselines for a
single specific decoder, namely, BP. We use a conventional
method of sampling in which readouts are performed as lines
at different phase encodes, corresponding to a horizontal line
in Fourier space. Hence, our subsampling masks consist of
only full horizontal lines, and we let S in Section III-B be the
set of all horizontal lines accordingly.

We use our greedy algorithm to find a subset of such lines at
a given budget on the total number of samples (or equivalently,
the sampling rate). From the data of the five subjects with
20 slices each, we take the first 2 subjects (40 slices total) as
training data. Once the masks are obtained, we implement the
reconstructions on the remaining 3 subjects (60 slices total).
As seen in Figure 1, the learning-based approach outperforms
the baselines across all sampling rates shown.

C. Cross-Performances of Decoders

Next continuing in the same setting as the previous subsec-
tion, we compare all four decoders (TV, BP, BM3D, and NN),
and evaluate how a mask optimized for one decoder performs

TABLE I
PSNR AND SSIM PERFORMANCES AVERAGED ON 60 TEST SLICES AT

25% SUBSAMPLING RATE. THE ENTRIES WHERE THE LEARNING IS

MATCHED TO THE DECODER AND PERFORMANCE

MEASURE ARE SHOWN IN BOLD

Fig. 1. PSNR as a function of subsampling rates with BP reconstruction.

when applied to a different decoder. We refer to these as cross-
performances, and the results are shown in Table I. Here we
report both the PSNR (top) and SSIM values (bottom), but
the training optimizes only the PSNR; see Section IV-E for
training with respect to the SSIM.

Once again, the learning-based approach outperforms the
baselines by approximately 2.5-3.5 dB for all decoders con-
sidered. We observe that the greedy method always finds the
best performing mask for the given reconstruction algorithms
that we use. The performance drop is typically small when
the masks optimized for other decoders are used. In Figure 2,
we further illustrate these observations with a single slice from
the test data, showing the masks and reconstructions along
with their PSNR and SSIM values. In this figure, we also
compare to a pure low-pass mask given in the bottom row.
It can be seen that the greedy masks outperform the the low
pass mask as well, in terms of PSNR, SSIM and also visual
quality, as they offer sharper images with less aliasing artefacts
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Fig. 2. MRI reconstruction example for the test subject 2, slice 4 at 25% subsampling rate. Sampling masks consist of horizontal lines (phase encodes)
and are obtained by the baseline methods [31], [41] and the greedy method proposed in Algorithm 1 where PSNR is used as the performance
measure. PSNR (in dB) and SSIM values are shown on the images. The last row shows the performance of purely low-pass mask with different
decoders. We put the ground truth into the each row of the last column for the ease of visual comparison, except for the first row, where we present
the k-space of the ground truth image in log-scale.

by balancing between low and high frequency components.
On the other hand, as can be seen from the zoomed-in regions,
the pure low-pass mask introduces strong blurring, whereas

the other baseline masks (coherence-based and single image)
cause highly visible aliasing due to suboptimal sampling
across low to intermediate frequencies.
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TABLE II
PSNR AND SSIM PERFORMANCES AT 25% SUBSAMPLING

RATE AVERAGED ON 60 TEST SLICES

Computation times for the greedy mask optimization on a
parallel computing cluster depend strongly on the reconstruc-
tion algorithm in use, and are as follows for a mask of 25%
sampling rate using MATLAB’s Parallel Computing Toolbox
with 256 CPU nodes: (TV) 2 hours and 41 minutes; (BP with
shearlets) 3 hours and 23 minutes; (BM3D) 5 hours and
24 minutes. The coherence-based algorithm takes 10 seconds
on 256 nodes. The single-image based adaptive algorithm is
quite fast, running in 2 seconds on a single node. For the NN
decoder, the greedy algorithm takes 2 hours and 19 minutes
on 40 GPU nodes using multiprocessing package of Python.
Note that these computations for mask selection are carried out
offline, and therefore, we contend that the longer computation
time for the greedy mask selection should not be considered
a critical issue.

D. Comparison of Greedy and Parametric Methods

We now perform an experiment comparing the greedy
approach (Algorithm 1) and the parametric approach with
learning (Algorithm 2). In contrast with the previous exper-
iments, we consider measurements in the 2D Fourier space
along both horizontal and vertical lines. As described in [35],
this is done via a pulse sequence program that switches
between phase encoding and frequency encoding, and can pro-
vide improvements over the approach of using only horizontal
lines.

We tune the parameters of [35] on the training data using
Algorithm 2. The first two of the three parameters are dx

and dy , which are the sizes of the fully sampled central
regions in horizontal and vertical directions. We sweep this
for dx , dy ∈ {2, 4, . . . , dmax} where dmax is maximum feasible
fully sampled region size for a given subsampling rate. The
last parameter D is the degree of the polynomial that defines
the probability distribution function from which random masks
are drawn. We sweep over D ∈ {1, 3, 5, . . . , 13}. We then
randomly draw 5 masks for each choice of parameters, and
we use the mask that gives the best average PSNR on the
training data, as per Algorithm 2.

As seen in Table II, the greedy approach outperforms the
parametric approach for both the TV and BP reconstruction
algorithms. Interestingly, the masks obtained are also visually
rather different (cf., Figures 3 and 4, which also show the
reconstructions for a single slice), with the greedy masks being
more “spread” rather than taking a continuum of rows at low
frequencies. It can be also noticed that both methods choose
more horizontal lines than vertical lines, due to the fact the the
energy in k-space is distributed relatively more broadly across
the horizontal direction, as can be seen on the top-right corner
of Figure 2.

Fig. 3. Masks obtained and example reconstructions under TV decoding
at 25% sampling rate, for the parametric method of [35] combined with
Algorithm 2, and the greedy method given in Algorithm 1. Both horizontal
and vertical lines are permitted. The reconstruction shown is for subject 2,
slice 4.

Fig. 4. Masks obtained and example reconstructions under BP decoding
at 25% sampling rate, for the parametric method of [35] combined with
Algorithm 2, and the greedy method given in Algorithm 1. Both horizontal
and vertical lines are permitted. The reconstruction shown is for subject 2,
slice 4.

E. Cross-Performances of Performance Measures

In the previous experiments, we focused on the PSNR
performance measure. Here we show that considering different
measures can lead to different optimized masks, and that it is
important to learn a pattern targeted to the correct performance
measure. Specifically, we consider both the PSNR and the
structural similarity index (SSIM) [1]. Also different from the
previous experiments, we use the data set of angiographic
brain scans instead of T1-weighted scans (see Section IV-A
for details). We return to the method of taking horizontal lines
only in the sampling pattern.

Table III gives the PSNR and SSIM performances for
the TV and BP decoders, under the masks obtained via the
greedy algorithm (cf., Algorithm 1) with the two different
performance measures and the decoders at 30% sampling
rate. These results highlight the fact that certain decoders
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TABLE III
RECONSTRUCTION PERFORMANCES AT 30% SUBSAMPLING RATE

AVERAGED OVER 60 ANGIO TEST SLICES. THE CASES THAT THE

TRAINING IS MATCHED TO THE PERFORMANCE MEASURE AND

DECODER ARE HIGHLIGHTED IN BOLD

TABLE IV
PSNR AND SSIM PERFORMANCES AT 25% SUBSAMPLING RATE WITH

ADDITIVE NOISE, AVERAGED OVER 60 TEST SLICES AND 10 RANDOM

NOISE DRAWS. THE CASES THAT THE TRAINING IS MATCHED TO THE

PERFORMANCE MEASURE AND DECODER ARE HIGHLIGHTED IN BOLD

are often better suited to certain performance measures. Here,
TV is suited to the PSNR measure, as both tend to prefer
concentrating the sampling pattern at low frequencies, whereas
BP is better suited to SSIM, with both preferring a relatively
higher proportion of high frequencies. Note also that in some
columns, the performance is not highest on the rows where
the training is matched to the decoder and the performance
measure (shown in bold), but slightly lower than the highest
values, which is most likely either due to limited training
data or the suboptimality of the greedy algorithm.

These observations are further illustrated in Figure 5(only
for TV decoder and its masks due to space constraints), where
we show the optimized masks, the reconstructions on a single
slice and as the maximum intensity projection (MIP) of the
volume this slice belongs to [61]. We see in particular that
the two masks are somewhat different, with that for the PSNR
containing more gaps at higher frequencies and fewer gaps at
lower frequencies. We also observe that compared to the data
used in the previous subsections, the angiographic data used
in this experiment is more concentrated at the center of the
k−space. The greedy algorithm is able to adapt to this change
and obtain masks that have more lower frequencies.

F. Experiments With Additive Noise

The data we used in the previous subsections has very low
levels of noise. In order to test the validity of our claims in the
noisy setting, we add bivariate circularly symmetric complex
random Gaussian noise to our normalized complex images,
with a noise standard deviation of σ = 3× 10−4 for both the
real and imaginary components. Since the ground truth images

Fig. 5. Masks obtained, example reconstructions, and MIP views of
a volume under TV decoding at 30% sampling rate. The mask in the
fourth row is obtained using the SSIM as the performance measure in
Algorithm 1, and the following mask is obtained using the PSNR. We also
present the performances of the coherence-based [31] and single-image
based [41] masks. The last row shows the low-pass mask performance.
The reconstruction shown is for subject 1, slice 15 in the middle column,
and for the MIP of the whole brain in the last column. In the first row,
we present the ground truth as a single slice and as MIP; these are used
as references when computing the errors.

are normalized, this noise level gives an average signal-to-
noise ratio (SNR) of 25.68 dB. We set the denoising parameter
of NESTA to � = 10 for TV minimization and to � = 1.1 for
BP with shearlets which work well with the various masks
and images used in this section. In Algorithm 1, we measure
the error at each iteration with respect to denoised image that
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Fig. 6. Masks obtained and example reconstructions under TV and
BP decoding at 25% sampling rate. PSNR is used as the performance
measure in the greedy method given in Algorithm 1. The reconstruction
shown is for subject 2, slice 4. We also present the performances of
coherence-based [31] and single-image based [41] masks. In the first
row, we present the ground truth, noisy ground truth, and its k-space.
The last row shows the low-pass mask performance.

is obtained using BM3D denoising algorithm [4]. Note that
the ground truth should not be used in the learning algorithm,
since it is unknown in practice. On the other hand, in the
testing part, we compute the errors with respect to the ground
truth images.

As can be seen from Figure 6 and Table IV, the greedy
algorithm is still capable of finding a better mask compared
to the other baseline masks. Therefore, in this example, our

approach is robust with respect to noise. Note that we train
with respect to the PSNR, but also report the SSIM values.
Note also that compared to the case where the noise levels
were very low, the mask obtained in noisy setting is slightly
closer to a low-pass mask. The reason for this is that the noise
hides the relatively weaker signal present at high frequencies,
while only having a minimal effect on the stronger signal
present at lower frequencies.

V. CONCLUSION

We have presented a versatile learning-based framework for
selecting masks for compressive MRI, using training signals
to optimize for a given decoder and anatomy. As well as
having a rigorous justification via statistical learning theory,
our approach is seen to provide improved performance on real-
world data sets for a variety of reconstruction methods. Since
our framework is suited to general decoders, it can potentially
be used to optimize the indices for new reconstruction methods
that are yet to be discovered. In this work, we focused on
1D subsampling for 2D MRI, 2D subsampling (via horizontal
and vertical lines) for 2D MRI, and 1D subsampling for
3D MRI, but our greedy approach can potentially provide
an automatic way to optimize the sampling in the settings
of 2D subsampling for 3D MRI and non-Cartesian sampling,
as opposed to constructing a randomized pattern on a case-by-
case basis. For the setting of 3D MRI, there is an additional
computational challenge to our greedy algorithm, since the
candidate set is large.

In future studies, we will also seek to validate the per-
formance under the important practical variation of multi-
coil measurements, as well as applications beyond MRI such
as computer tomography, phase retrieval, and ultrasound.
We finally note that in this paper, the number of subjects and
training images used was relatively small, and we anticipate
that larger data sets would be of additional benefit in realizing
the full power of our theory.

APPENDIX

A. Proof of Proposition 1

Using the fact that η lies in [0, 1] and applying Hoeffding’s
inequality [62], we obtain for any � ∈ A and t > 0 that

∣∣∣∣∣∣
1

m

m∑

j=1

η�(x j )− EP [η�(x)]

∣∣∣∣∣∣
≤ t,

with probability at least 1 − 2 exp(−2mt2). Since the proba-
bility of a union of events is upper bounded by the sum of the
individual probabilities (i.e., the union bound), we find that
the same inequality holds for all � ∈ A with probability at
least 1−2 |A| exp(−2 mt2). The proposition follows by setting
δ = 2 |A| exp(−2 mt2) and solving for t .

B. Proof of Proposition 2

By the fact that the Fourier transform is a unitary oper-
ation and i.i.d. Gaussian vectors are invariant under unitary
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transforms, we have

ηnoisy(�) = E
[
η(x, x̂(P��x + w))

]

= E
[
η(x, x̂(P��(x + v)))

]
, (18)

where x̂(b) denotes the estimator applied to the noisy output b,
and v has the same distribution as any given v j .

Let ṽ = ξ(v) be the denoised version of v. Using the triangle
inequality, we write

∣∣∣ 1
m

∑m
j=1 η(x j + ṽ j , x̂(P��(x j + v j )))− ηnoisy(�)

∣∣∣

=
∣∣∣∣

1
m

∑m
j=1 η(x j + ṽ j , x̂(P��(x j + v j )))

−E
[
η(x, x̂(P��(x + v)))

] ∣∣∣∣

≤
∣∣∣∣

1
m

∑m
j=1 η(x j + ṽ j , x̂(P��(x j + v j )))

−E
[
η(x + ṽ, x̂(P��(x + v)))

] ∣∣∣∣

+
∣∣∣E

[
η(x+ṽ, x̂(P��x + w))

]−E
[
η(x, x̂(P��x + w))

] ∣∣∣.

Using (18) and following the proof of Proposition 1, the first

term is upper bounded by
√

1
2m log

( 2|A|
δ

)
with probability at

least 1 − δ. Moreover, by the continuity condition assumed
in the proposition statement, the second term above is upper
bounded by L E

[�̃v�2
]
, thus completing the proof.
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