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Purpose: DWI suffers from low SNR when compared to anatomical MRI. To main-
tain reasonable SNR at relatively high spatial resolution, multiple acquisitions must
be averaged. However, subject motion or involuntary physiological motion during
diffusion-sensitizing gradients cause phase offsets among acquisitions. When the
motion is localized to a small region, these phase offsets become particularly prob-
lematic. Complex averaging of acquisitions lead to cancellations from these phase
offsets, whereas magnitude averaging results in noise amplification. Here, we propose
an improved reconstruction for multi-acquisition DWI that effectively corrects for
phase offsets while reducing noise.

Theory and Methods: Each acquisition is processed with a refocusing reconstruc-
tion for global phase correction and a partial k-space reconstruction via projection-
onto-convex-sets (POCS). The proposed reconstruction then embodies a new phase-
correcting non-local means (PC-NLM) filter. PC-NLM is performed on the complex-
valued outputs of the POCS algorithm aggregated across acquisitions. The PC-NLM
filter leverages the shared structure among multiple acquisitions to simultaneously
alleviate nuisance factors including phase offsets and noise.

Results: Extensive simulations and in vivo DWI experiments of the cervical spinal
cord are presented. The results demonstrate that the proposed reconstruction improves
image quality by mitigating signal loss because of phase offsets and reducing noise.
Importantly, these improvements are achieved while preserving the accuracy of appa-
rent diffusion coefficient maps.

Conclusion: An improved reconstruction incorporating a PC-NLM filter for multi-
acquisition DWI is presented. This reconstruction can be particularly beneficial for
high-resolution or high-b-value DWI acquisitions that suffer from low SNR and
phase offsets from local motion.
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1 | INTRODUCTION

DWI enables the identification of the structure and organiza-
tion of tissues at the microscopic level.1,2 DWI has been
widely performed on the brain, but its use in small, deep
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regions such as the spinal cord, prostate, liver, or kidney has
been relatively restricted. One of the primary limitations is
reduced SNR,1 caused by the absence of custom receive-coil
arrays with large number of channels that can be placed in
close vicinity of these regions (as opposed to 32–96 channels
for brain coils). This SNR limitation is especially problem-
atic at high b-values and high spatial resolutions.3 The spinal
cord, for instance, has a relatively small diameter that man-
dates high-resolution imaging. Moreover, spine array coils
typically feature only 6–8 channels and can only be placed
posteriorly to the spine. In such cases, it is common to
improve SNR by averaging multiple acquisitions. However,
numerous sources of involuntary physiological motion com-
plicate the averaging process.4

Motion during diffusion-sensitizing gradients results in k-
space shifts and global/local phase offsets among acquisitions.
With complex averaging, these shifts/offsets can cause signal
cancellations across acquisitions.5 The most common approach
to this problem in clinical settings is magnitude averaging
optionally followed by image denoising. Removing phase
information prevents phase-offset related issues, albeit at the
expense of lower SNR.6 Several studies considered subsequent
denoising of magnitude-averaged images to enhance DWI
images and ADC estimates.6–21 Various denoising methods
were proposed for DWI including maximum likelihood (ML)
estimation,13 linear minimum mean squared error
estimation,14–16 anisotropic diffusion filtering,17,18 transform-
domain denoising,21 smoothing based on constrained varia-
tional principles,19 and non-local means (NLM) filtering.9–12,20

Recent studies also used the joint information provided by
DWI images in different diffusion-encoding directions, with
the goal of better preserving the edges that are common across
multiple images.7 Note that these techniques were demon-
strated for DWI of the brain, where higher SNR levels and
reduced motion-induced problems are expected compared to
the spinal cord. In relatively SNR-starved data sets, however,
magnitude averaging can lead to accumulation of noise, which
can be difficult to remove via post-processing approaches.

An alternative approach to improve SNR in multiple-
acquisition DWI is to perform complex averaging after phase
correction. This correction can be performed using a refocus-
ing reconstruction22 that accounts for global phase errors
based on low-resolution phase information. For self-navigated
acquisitions (e.g., single-shot acquisitions such as single-shot
echo planar imaging (ss-EPI) or multi-shot acquisitions such
as PROPELLER23,24), the low-resolution phase can be
extracted from a central portion of the k-space data. Other
multi-shot acquisitions, on the other hand, are prone to
motion-induced k-space shifts in each interleaf, requiring
external navigator echoes25,26 or optical motion tracking.27–29

However, as we show in this work, correction of phase errors
because of bulk motion may not compensate for local phase
issues, resulting in local signal cancellations in DWI images.

Here, we propose a reconstruction scheme that incorpo-
rates a new phase-correcting non-local means (PC-NLM) fil-
ter to mitigate noise and prevent local signal cancellations,
while preserving the details of DWI images and yielding
accurate ADC estimates. With this technique, we especially
target DWI of the spinal cord. We start by demonstrating that
the local phase issues in the spinal cord are prominent when-
ever the diffusion-encoding direction has a significant com-
ponent along the anterior/posterior (A/P) direction. Instead of
denoising as a post-processing step, the proposed PC-NLM
filter is integrated into the reconstruction routine, directly
operating on multiple complex-valued acquisitions. We show
with extensive simulations and via in vivo high-resolution
DWI that the proposed technique suppresses signal cancella-
tions because of local phase errors, while overcoming noise
accrual because of intrinsic low-SNR acquisitions.

2 | THEORY

In this section, we first demonstrate the local phase problems
in DWI of the cervical spine, followed by a description of
the standard NLM filter. We then explain the proposed PC-
NLM filter and how it integrates into the overall image
reconstruction scheme.

2.1 | Phase issues in DWI

Asmentioned above, 2 different approaches can be undertaken
when combining multiple DWI acquisitions: global phase
terms can be corrected using an algorithm such as refocusing
reconstruction22 before averaging, or phase information can
be neglected entirely via magnitude averaging. The shortcom-
ings of both approaches are exemplified in Figure 1.
Figure 1A shows the magnitude and phase images of repeti-
tions for DWI of the cervical spine. Despite global phase cor-
rection, each repetition displays different patterns of local
phases (red arrows). These local phase errors occur at exactly
the same position for images obtained from all receive-array
channels, indicating that they, in fact, stem from anatomical
sources (see Supporting Figure S1). In DWI of the spinal cord,
we have observed that the local phase issues are most promi-
nent when the diffusion-encoding direction has a significant
component along the A/P direction (see Supporting Figures S2
and S3) and their locations coincide with the nerve roots exit-
ing the spinal cord. This observation indicates a local motion
of the cord in the A/P direction, which is consistent with the lit-
erature on nerve root pulsations in the same direction,
synchronized to heart and CSF pulsations. Literature suggests
that the local motion of the spinal cord is especially affected
by the motion in the radicular arteries because of arterial pulsa-
tion and respiration.30–33
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As shown in Figure 1B, for complex averaging follow-
ing global phase correction, local phase errors can result
in signal cancellations along the spinal cord. These cancel-
lations can be mistaken with local increases in diffusion.
Magnitude averaging, on the other hand, can cause noise
amplification in the combined image when each repetition
is SNR-starved. The goal of this work is to simultaneously
correct for phase errors while boosting the SNR of the
combined image.

2.2 | NLM filtering

Unlike typical denoising methods that perform filtering
across small neighborhoods of pixels,34 NLM filtering
denoises each pixel by averaging it with other pixels from
highly similar patches. The search for similar patches can be
performed over the whole image or a specified search area.20

Here, we describe the standard 2D NLM filter with the
following notations:

� m(xi,yi): the central-pixel intensity at location (xi,yi)

� Ni: the local 2D neighborhood centered around (xi,yi), of
size (2d1 1)2, d eN.

� m(Ni): the neighborhood intensity vector containing the
intensities of the pixels in Ni

� Sx,Sy: the sizes of the image in x- and y-directions

� X2 : the image grid

� jX2j 5 Sx,Sy: the total number of pixels in the 2D image

� Vi: the search volume centered around (xi,yi), of size
(2M1 1)2, M eN

The filtered intensity is a weighted average of all the pixels
in the search area:

mNLM xi; yið Þ5
X

xj;yjð Þ e Vi

w xi; yi; xj; yj
� �

m xj; yj
� �

: (1)

Instead of using the distance from the central pixels, the
filter weights, w xi; yi; xj; yj

� �
, are determined using the simi-

larity between the neighborhood intensity vectors:

w xi; yi; xj; yj
� �

5
1
Zi
e2

jm Nið Þ2m Njð Þj2
h2 : (2)

Here, h eR is a smoothing parameter calculated accord-
ing to the noise variance in the image. Zi is a normalization
constant, which ensures that the sum of all filter weights is
equal to 1, i.e., X

j

w xi; yi; xj; yj
� �

51: (3)

As in all denoising methods, there is a trade-off between
the sharpness and SNR of the resulting image. In NLM, this
trade-off is controlled via h, which needs to be tuned care-
fully. This parameter can be estimated from the pseudo-
residuals as follows35,36:

ei5

ffiffiffi
4
5

r
jm xi; yið Þ2 1

4

X
xj; yjð Þ e Pi

m xj; yj
� �j: (4)

Pi is the 4-neighborhood for pixel xi; yið Þ and the con-
stant

ffiffiffiffiffiffiffiffi
4=5

p
is used to satisfy E ei2½ �5r2.20 Then the noise

variance in the image can be estimated as:

r25
1

jX2j
X

i e X2

ei
2: (5)

Finally, the smoothing parameter can be calculated by:

h252br2jNij; (6)

where b eR is manually tuned between 0.5 and 1, in correla-
tion with the noise level.20

2.3 | PC-NLM filtering

In this work, instead of post-processing a reconstructed DWI
image via NLM filtering, we incorporate a novel NLM filter
into the image reconstruction process to correct for phase
errors while boosting SNR. The proposed method relies on
the fact that multiple acquisitions (NEX) of the same image
share the same underlying structure, but have varying phase

FIGURE 1 Local phase problems in DWI of the cervical spinal cord.
(A)Magnitude and phase of each acquisition for a single slice, following a
refocusing reconstruction to correct for global phase errors and a partial k-
space reconstruction. Local phase errors (shown by red arrows) are espe-
cially prominent in the case where diffusion sensitizing gradients are in the
A/P direction, as in this example. (B)When direct complex averaged, the
phase errors result in local signal cancellations.Magnitude averaging, on
the other hand, leads to an accumulation of noise especially in regions that
were SNR-starved before averaging
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errors and noise. To leverage this property, multiple acquisi-
tions are first concatenated to form a large image of size
Sx 3 (NEX Sy). This concatenation is performed using
complex-valued images. The search volume of NLM is
expanded to include patches in identical locations across
repeated acquisitions, as demonstrated in Figure 2A. Accord-
ingly, if the original search volume for pixel xi; yið Þ is
Vi xi; yið Þ, the expanded search volume can be expressed as:

V 'i5
[NEX

n51
Vi xi;mod yi1nSy;NEX Sy

�� �
:

�
(7)

In the absence of phase errors, the repeated positions in
the concatenated image should yield very high similarity to
the neighborhood Ni of a central pixel. These positions will
be effectively complex averaged during the weighted averag-
ing step. In the presence of phase errors, however, the Eucli-
dian distance jm Nið Þ2m Nj

� �j will be large because of phase
differences among repetitions, reducing the contribution of
those positions. In this manner, phase-dependent averaging
will suppress signal cancellations stemming from local phase
errors.

The primary goal of the PC-NLM filter is to correct for
phase errors, while preserving the structural integrity of the
reconstructed image. It is also important that the algorithm
runs without user intervention. First, to avoid excessive
denoising that may result in spatial blurring, we use b5 0.5
in this work. Next, the smoothing parameter is determined
automatically using Eq. 6, with a slight modification as
explained in the following subsection. Here, the smoothing
parameter controls not only the similarity threshold among
the neighborhood intensities, but also the tolerable range of
phase errors. If the smoothing parameter is set too large,
averaging will be performed across many patches, causing
spatial blurring. If this parameter is set too small instead,

averaging will be performed across only a few patches, com-
promising noise suppression. Therefore, the smoothing
parameter must be set to avoid excessive blurring, while
allowing sufficient averaging to take place.

2.4 | Image reconstruction with PC-NLM
filtering

The proposed image reconstruction, outlined in Figure 2B,
corrects for global phase issues and reduces the noise level
when combining multiple acquisitions. First, multiple acquis-
itions are phase-corrected using a refocusing reconstruction
that estimates the global phase using a fully sampled central
portion of k-space data22 (ranging between 6–12% in this
work). These individual phase-corrected acquisitions are then
separately processed with the projection-onto-convex-sets
(POCS) algorithm for partial k-space reconstruction with 3
iterations.37 The complex-valued outputs of the POCS algo-
rithm are concatenated across acquisitions to form an aggre-
gate image, which is then processed with the PC-NLM filter.
The neighborhood size and search volume are set to d5 1
and M5 5, as these values were previously shown to yield
the lowest RMS error between ideal noise-free images and
NLM-filtered noisy images.20 Finally, the output of the PC-
NLM filter is deconcatenated, and the resulting images are
magnitude averaged across acquisitions. The proposed recon-
struction is performed individually for each coil, and the coil
images are combined via square-root of sum-of-squares.

For a conventional NLM filter, the smoothing parameter
would be calculated using the image that is input to the filter
(i.e., the aggregate image at the output of the POCS algorithm
in this case). However, POCS amplifies high-frequency noise
while filling unacquired k-space and this can lead to

FIGURE 2 The proposed phase-correcting non-local means (PC-NLM) filter and the overall image reconstruction scheme. (A)Multiple image
acquisitions are first concatenated to form an aggregate image. The search volume in PC-NLM for finding similar neighborhoods is expanded to include
the repeated positions across multiple acquisitions. (B) The proposed reconstruction (illustrated for a single coil): multiple acquisitions are first phase-
corrected via a refocusing reconstruction using a central portion of k-space data. After phase correction, individual-acquisition images are processed with
the POCS algorithm (3 iterations) for partial k-space reconstruction. The complex-valued outputs of the POCS algorithm are concatenated to form an
aggregate image that is processed with the PC-NLM filter. The smoothing parameter of PC-NLM is calculated from concatenated phase-corrected acquisi-
tions to retain sensitivity for detailed image features. The filtered aggregate image is deconcatenated andmagnitude averaged across acquisitions
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overestimation of the smoothing parameter that depends on
the estimated noise. Here, the smoothing parameter is instead
estimated directly on global-phase-corrected acquisitions con-
catenated across acquisitions (see Figure 2B). This estimation
procedure increases sensitivity for detailed image features in
the subsequent PC-NLM step.

3 | METHODS

3.1 | DWI simulations

Simulations were carried out using the spinal cord MRI data
extracted from PropSeg Spinal Cord Segmentation Tool-
box.38,39 A sample T2-weighted sagittal image provided in
the toolbox is shown in Figure 3A (original FOV5 264 3
384 mm2, TE5 119 ms, TR5 1500 ms, 1 3 1 mm2 in-
plane resolution). The original FOV was reduced to a smaller
FOV of 110 3 54 mm2 to approximate the in vivo images
acquired in this work. PropSeg Toolbox was used to obtain
segmented tissue masks of CSF, gray matter (GM), and
white matter (WM). The other tissues were marked as
“others” in this work. These masks were corrected using dila-
tion/erosion operations, and spatially smooth transitions
between tissues were achieved via frequency-domain apod-
ization of the masks. The purpose of these corrections was to
obtain simulated diffusion-weighted images that match the in
vivo images, with soft transitions between tissue boundaries.
The final tissue segmentations are displayed in Figure 3B.

Next, a diffusion-weighted image was simulated based
on the T2-weighted image. The mean ADC for GM and
WM were taken as 900 3 1026 mm2/s and 700 3 1026

mm2/s, respectively.4,40 The reported mean ADC values for
CSF vary between 4600 3 1026 mm2/s and 8000 3 1026

mm2/s.4,41 Similarly, the in vivo experiments in this work
yielded ADC values between 5500 3 1026 mm2/s and
7500 3 1026 mm2/s for CSF. Note that these ADC values
for spinal CSF are biased by pulsation effects, as they are
larger than free water diffusivity at body temperature. Here,
we have chosen 7000 3 1026 mm2/s for the ADC of CSF
to match the in vivo diffusion-weighted images where
CSF regions are devoid of signal. The tissues labeled as
“others” were assumed to consist of muscle with an ADC
of 1500 3 1026 mm2/s. To match the in vivo experiments,
b5 500 s/mm2 was assumed. The resulting DWI image is
shown in Figure 3C.

Next, NEX5 16 acquisitions were simulated for the
DWI image, each with zero initial phase. These acquisitions
were then processed to induce similar k-space shift and phase
errors as those observed in the in vivo experiments. Accord-
ingly, a linear global-phase term was added in the image
domain to model k-space shifts because of bulk motion dur-
ing diffusion-sensitizing gradients. The k-space of each
acquisition was shifted in kx and ky directions, with the

amount of shift randomly picked from a uniform distribution
between [20.2, 0.8] pixels. A 2D local phase term was then
added to each image to model the phase errors because of
local motion dominant in the A/P direction. These local
phases, / x; yð Þ, were added to locations near the nerve roots
where the local motion was reported to be the most problem-
atic31 and were calculated as follows5:

/ x; yð Þ5gGdD x; yð Þ: (8)

Here, x-direction is superior-inferior (S/I) direction, y-
direction is the A/P direction, g is the gyromagnetic ratio,
G is the amplitude of the diffusion-sensitizing gradient
(assumed to be in the A/P direction), d is the duration of
the diffusion-sensitizing gradient, andD x; yð Þ is the level of
the motion in the A/P direction. Here, D x; yð Þ was modeled
as a zero-mean unit-amplitude Gaussian window in the
x-direction, and a Hanning-tapered window in the
y-direction, affecting a region of size 36 3 16 pixels, i.e.,

D x; yð Þ5DA WGauss xð ÞWHanning yð Þ: (9)

The SD of the Gaussian window was randomly picked
from a uniform distribution between [0.7, 1.1] pixels for
each acquisition, while the Hanning-tapered window was
kept the same with a 4-pixel wide transition region on both
sides and an 8-pixel wide flat region. The peak motion
amplitude DA was chosen from a uniform distribution
between [0.2, 0.4] mm, in accordance with the ones reported
in the literature for the cervical spinal cord.30,32

Finally, complex-valued Gaussian noise was added to the
k-space data of each acquisition at 13 different noise levels.
The noise-to-signal ratio (NSR) of the images varied linearly
between [0, 0.750], where the SD of noise was used to define
the noise level (chosen to be identical for real and imaginary
components) and the peak image intensity was used to define
the signal level. Equivalently, using SNR5 1/NSR, the SNR
of each acquisition ranged between infinity and 1.33. To
match in vivo experiments, a 62.5% k-space coverage was
used for each acquisition (i.e., 37.5% of k-space data were
replaced with zeros in ky direction).

FIGURE 3 Process for simulating a diffusion-weighted image based
on a T2-weighted input image. (A) A sample T2-weighted sagittal image
fromPropSeg Spinal Cord Segmentation Toolbox. (B) Segmented tissues:
cerebrospinal fluid (CSF), gray matter (GM), white matter (WM), and
“others.” (C) The resultant DWI image for b5 500 s/mm2 is depicted
without any noise or phase added
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3.2 | In vivo DWI experiments

In vivo DWI images of the cervical spinal cord of healthy
subjects were acquired in the sagittal plane on a 3T GE MR
750 scanner, in accordance with the institutional review
board protocol. Among the subjects imaged, 2 cases that
demonstrated the signal cancellation issues were chosen
prospectively.

For the first subject, a 6-channel cervico-thoracic-lumbar
(CTL) coil was used. To achieve high in-plane resolution, a
reduced-FOV acquisition in the phase-encode (PE) direction
was implemented via a 2D-selective RF excitation pulse.42

ss-EPI readout with 192 3 48 imaging matrix and 62.5%
partial k-space coverage in the PE direction was used. Diffu-
sion weighting was applied in 3 orthogonal directions (S/I,
A/P, R/L) with b5 500 s/mm2, a reasonable value for the
spinal cord in low-SNR cases.43 Other imaging parameters
were: 0.94 3 0.94 mm2 in-plane resolution, FOV5 18 3

4.5 cm2, 4 mm slice thickness, 6 slices, TE5 51.3 ms,
TR5 3600 ms, NEX5 16 averages, and a total scan time of
3 min 52 s. For the second subject, an 8-channel CTL coil
was used. DTI images with 12 directions at b5 500 s/mm2

were acquired, along with 2 T2-weighted images. The imag-
ing parameters were: 1 3 1 mm2 in-plane resolution,
FOV5 20 3 5 cm2, 3 mm slice thickness, 6 slices, TE5

52 ms, TR5 4600 ms, NEX5 16, and a total scan time of
17 min. Other imaging parameters were kept the same as in
the first subject.

3.3 | Alternative reconstructions
and comparison of image quality

Five alternative reconstructions were implemented for com-
parison. In common with the proposed reconstruction, all
alternative reconstructions processed each of the multiple
acquisitions with a refocusing reconstruction,22 followed by
the POCS partial k-space reconstruction.37 Each reconstruc-
tion then implemented a unique processing on outputs of the
POCS algorithm:

1. Complex averaging (COMP): multiple acquisitions were
complex averaged.

2. NLM-filtered complex averaging: (NLM-COMP): each
acquisition was NLM filtered individually. The smooth-
ing parameter was calculated immediately before filter-
ing, as in the standard NLM filter.20 As in PC-NLM,
d5 1 and M5 5 were used. Finally, the NLM-filtered
acquisitions were complex averaged.

3. Magnitude averaging (MAGN): multiple acquisitions
were magnitude averaged.

4. NLM-filtered magnitude averaging: (NLM-MAGN): the
magnitude image of each acquisition was NLM filtered

individually. The smoothing parameter was calculated
immediately before filtering, based on the magnitude
image. Again, d5 1 and M5 5 were used. Finally, the
NLM-filtered acquisitions were magnitude averaged.

5. Model fitting (MOD-FIT): magnitude images from multi-
ple acquisitions were used to fit a Rician noise distribu-
tion model to each pixel.44 Model fitting was carried out
via ML estimation using 2 independent variables of the
Rice distribution, rg and h.45 Here, rg is the SD of the
underlying complex Gaussian noise (identical for real
and imaginary channels) and h is the true signal intensity
for the diffusion-weighted image in the absence of noise.
A typical strategy is to calculate rg from the background
of an MRI image.46 Because of lack of a background
region in reduced-FOV images, here, we performed the
following: first, an initial model fitting was carried out
for each pixel location individually, using the intensities
from NEX5 16 repetitions. From the resulting map of
rg values, the mean rg across all pixel locations was cal-
culated. Finally, this mean rg value was enforced via a
constrained model fit that only calculated h for each
pixel. For pixels where a non-negative h cannot be fit, a
small pixel intensity of rg=100 was assigned. Assuming
that the underlying noise level is constant throughout the
image, the intermediate step of calculating the mean rg

significantly improves model fitting results, especially
under high noise levels.

To assess the reconstructions in terms of image quality and
the accuracy of the computed ADCs, a reference DWI image,
DWIref, was produced without noise or phase errors. For
unbiased comparison, a 62.5% k-space coverage was
assumed for the reference image, processed with the refocus-
ing reconstruction22 and the POCS partial k-space recon-
struction.37 Reference ADC map, ADCref, was generated
using DWIref. Comparisons were performed for 2 different
scenarios: (1) when only global phase errors are present to
test potential image deterioration when diffusion encoding is
in non-problematic directions, and (2) when both global and
local phase errors are present.

To quantitatively assess image quality, the peak-signal-
to-noise ratio (PSNR) metric was calculated:

PSNR510log10
MAX DWIoutð Þ2

1
jX2j

P
i e X2 DWIref xi; yið Þ2DWIout xi; yið Þ� �2 ;

(10)

where DWIout is the output DWI image for a given method.
To judge perceptual image quality, a secondary assessment
was performed using the structural similarity (SSIM) index.47

The built-in SSIM function of MATLAB 2016b (The Math-
Works, Natick, MA) was used with the default parameters of
C15 1 3 1024 and C25 9 3 1024, where the dynamic

6 | Magnetic Resonance in Medicine
KAFALI ET AL.



range of the pixel intensities was between [0, 0.25]. For
image quality assessments, Monte Carlo simulations were
performed via repeating the simulations 10 times at 13 differ-
ent noise levels ranging between NSR5 0 to NSR5 0.750.
The PSNR and SSIM values were averaged across repeats.
Note that image quality assessments were not performed for
in vivo data sets, because it was not possible to generate ref-
erence DWI images.

Last, to analyze the noise statistics in different regions of
the resulting images, a separate Monte Carlo simulation was
performed with 40 repetitions at a noise level of NSR5 0.25.
For each repetition, the local and global phases were kept
identical, and only the noise was randomly generated. For
each method, the SDs across 40 repetitions were computed
at each pixel location of the output DWI images.

4 | RESULTS

4.1 | DWI simulation results

The magnitude and phase of each acquisition for the simu-
lated dataset at NSR5 0.250 for the case of both global and
local phase errors are shown in Supporting Figure S4C.
Accordingly, random local phase was added to 2 different
locations along the length of the spinal cord (similar to the in
vivo case illustrated in Figure 1A). Images from the pro-
posed and alternative reconstructions at 3 selected noise lev-
els between NSR5 [0.125, 0.500] in Figure 4, with identical
gray-scale windowing. Here, NSR5 0.250 yielded DWI
images that were visually the most similar to the in vivo
results (see Supporting Figure S4 for a closer look at results
at this noise level for the cases with global phase only and
global and local phase errors).

In Figure 4, regardless of the noise level, COMP that per-
forms direct complex averaging results in signal cancellations.
On the other hand, MAGN that performs magnitude averag-
ing results in relatively poor SNR because of noise amplifica-
tion, causing a washed-out appearance especially at higher
noise levels. Although NLM-COMP and NLM-MAGN have
visibly improved SNR because of filtering, NLM filtering on
individual acquisitions does not address the signal cancella-
tion or background noise amplification problems. MOD-FIT
results in an unnatural look with a darkening of background
at increasing noise levels, because of the difficulty of model
fitting in low SNR regions. In contrast, the proposed recon-
struction renders a combined image with visibly enhanced
SNR without introducing signal cancellations.

Image quality with the proposed and alternative recon-
structions was assessed via the PSNR metric. The simula-
tions were repeated 10 times at 13 different noise levels
between NSR5 [0, 0.750], and the PSNR values were aver-
aged across repeats. Figure 5A shows the PSNR values in
the presence of global phase errors only. PSNR values for

COMP and NLM-COMP are in 30–45 dB range at all noise
levels, and higher than PSNR values for MAGN, NLM-
MAGN, and MOD-FIT when NSR> 0.150. (Note that
MOD-FIT shows degradation in image quality starting as
early as NSR> 0.100.) This trend is expected, as robustness
against noise amplification is the main advantage of complex
averaging. Meanwhile, there are some subtle differences in
quality introduced by NLM filtering for complex averaging
and magnitude reconstructions (i.e., between NLM-COMP
and COMP and between NLM-MAGN and MAGN).
Whereas NLM filtering slightly reduces PSNR at relatively
low noise levels, it yields a minor increase in PSNR at higher
noise levels. These results suggest that NLM causes smooth-
ing of detailed image features to suppress noise, and there-
fore its advantages are more apparent at higher noise levels.
The proposed reconstruction maintains a favorable trade-off
between NLM-COMP and NLM-MAGN at very low and
high noise levels (NSR< 0.1 and NSR> 0.4), and superior
performance compared to all other techniques in a broad
range of realistic noise levels (0.1<NSR< 0.4). At
NSR5 0.250, the proposed method has comparable PSNR
to COMP (38.3 dB vs. 38.2 dB), 4 dB higher PSNR than
MAGN (38.3 dB vs. 34.3 dB), and 6.9 dB higher PSNR than
MOD-FIT (38.3 dB vs. 31.4 dB).

FIGURE 4 DWI simulation results at three different NSR levels
(0.125, 0.250, and 0.500). Reconstruction outputs of the proposedmethod
and alternative methods are displayed for NEX5 16. COMP and NLM-
COMP show signal cancellations because of phase errors regardless of the
noise level. On the other hand, MAGN and NLM-MAGN yields pixel
intensities that are comparable to the noise floor, especially at higher noise
levels. MOD-FIT is sensitive to noise and yields an unnatural look as the
noise level increases. The proposed reconstruction achieves superior noise
suppression compared to methods based onmagnitude averaging and
model fitting, and alleviates signal cancellations compared tomethods
based on complex averaging
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Figure 5B shows the PSNR values in the presence of
both global and local phase errors. Compared to the simula-
tions with only global phase errors, PSNR values drop
�1.0–7.0 dB for COMP and NLM-COMP because of local
signal cancellations. Meanwhile, PSNR values for MAGN,
NLM-MAGN, and MOD-FIT are not affected. Still, MAGN
and MOD-FIT yield better PSNR performance at low noise
levels, and COMP yields better PSNR performance at high
noise levels. Note that the proposed technique achieves
PSNR similar to MAGN at low noise and COMP at high
noise, capturing the phase robustness of MAGN and noise
robustness of COMP simultaneously. When compared to
Figure 5A, the PSNR values of the proposed PC-NLM
method are only reduced by 0.5–1.0 dB for NSR< 0.100,
and this difference reduces to <0.1 dB at higher noise levels.
At NSR5 0.250, the proposed method has 2.8 dB higher

PSNR than COMP (38.3 dB vs. 35.5 dB), 4 dB higher PSNR
than MAGN (38.3 dB vs. 34.3 dB) and 6.9 dB higher PSNR
than MOD-FIT (38.3 dB and 31.4 dB). At a higher noise
level of NSR5 0.500, PC-NLM has 6.6 dB higher PSNR
than NLM-MAGN (33.0 dB vs. 26.4 dB), 5.4 dB higher than
MOD-FIT (33.0 dB vs. 27.6 dB), and comparable PSNR to
NLM-COMP (33.0 dB vs. 33.4 dB). It is important to note
that although COMP and NLM-COMP yield the highest
PSNR at high noise levels, they both suffer from signal can-
cellation. An aggregate PSNR metric over the entire image
can be ineffective in capturing these local artifacts.

To assess the perceptual quality of DWI images that also
reflect image sharpness, a secondary assessment was per-
formed using the SSIM metric. Figures 5C and 5D show the
SSIM values in the presence of only global phase errors and
in the presence of both global and local phase errors,

FIGURE 5 Image quality assessment for the proposed and alternative reconstructions based on PSNR and SSIMmetrics. The proposed reconstruc-
tion achieves a high level of image quality across a broad range of realistic noise levels (NSR< 0.400). (A) In the presence of only global phase errors,
PSNR values for COMP and NLM-COMP remain at high levels for all NSR values. Meanwhile, PSNR forMAGN, NLM-MAGN, andMOD-FIT drop
immediately with increasing noise. (B)When local phase errors are also incorporated, PSNR for COMP and NLM-COMP decrease�1–7 dB because of
local signal cancellations. The trends inMAGN, NLM-MAGN, andMOD-FIT remain the same. The proposed reconstruction shows PSNR values that
convergeMAGN at low noise levels and that converge COMP at high noise levels aroundNSR� 0.500. This result suggests that PC-NLM captures the
phase robustness ofMAGN and noise robustness of COMP simultaneously. (C and D) SSIM values of COMP and NLM-COMP do not change signifi-
cantly between the two scenarios (i.e., global phase errors vs. both global and local phase errors). Therefore, SSIM is not sufficiently sensitive to capture
phase-induced signal cancellation. SSIMs for MAGN and NLM-MAGNdrop significantly with increasing NSR because of noise accumulation. SSIM for
MOD-FIT drops similarly at higher NSR because of noise sensitivity. Last, the proposed reconstructionmaintains the highest SSIM values for
NSR< 0.300, and comparable SSIM to COMP at higher noise levels
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respectively. Overall, SSIM values for all reconstruction
methods tested remain similar between the two scenarios
depicted in Figures 5C and 5D. SSIM values for COMP and
NLM-COMP are higher than those for MAGN, NLM-
MAGN, and MOD-FIT when NSR> 0.100. Compared to
PSNR, the quality improvement with NLM filtering at high
noise levels is more clearly captured in SSIM measurements.
For instance, SSIM for MAGN drop from 0.99 to 0.24 as the
noise level is increased, whereas SSIM for NLM-MAGN
only drops from 0.99 to 0.51 in the same range. The SSIM
for MOD-FIT also drops significantly from 0.99 to 0.34 at
increasing noise levels. Last, the proposed reconstruction
maintains the highest SSIM values for NSR< 0.300, and
comparable SSIM to COMP at higher noise levels. Again, it
should be noted that both COMP and NLM-COMP suffer
from signal cancellations despite their high SSIM performan-
ces. Similar to PSNR, SSIM is an aggregate metric across the
entire image that is insufficiently sensitive in detecting local
artifacts.

For the simulated datasets, ADC maps were also com-
pared with ADCref. Figure 6 shows the mean ADC values in
3 different regions of interest (ROIs), selected as follows:

1. A region with no phase issues and relatively high SNR
(because of high local coil sensitivities),

2. a region with local phase issues, and

3. a region with local phase issues and relatively low SNR
(because of low local coil sensitivities).

The plots in Figure 6 show the average ADC values within
each ROI across 10 Monte Carlo simulations. With respect to
ADCref in ROI1, COMP, NLM-COMP, MOD-FIT, and the
proposed reconstruction tend to slightly overestimate the ADC

as noise increases. MAGN, on the other hand, underestimates
the ADC at high noise levels because of noise amplification.
NLM-MAGN also displays a similar trend, but only at very
high noise levels. In ROI2 and ROI3, signal cancellations in
COMP and NLM-COMP lead to significant overestimation of
ADC values, whereas noise amplification in MAGN and
NLM-MAGN result in underestimation of ADC especially in
ROI3. MOD-FIT overestimates the ADC values even at realis-
tic noise levels around NSR5 0.250, especially in ROI3. This
problem quickly escalates at higher noise levels because of the
difficulty of model fitting in low-SNR cases. The proposed
reconstruction yields ADC values that closely match the refer-
ence ADCs in all three ROIs, with a relatively minor tendency
to overestimate. It is important to note that although the error
in the ADC is overall comparable for the proposed method
and MAGN/NLM-MAGN, the proposed method achieves
superior noise suppression and significantly higher PSNR/
SSIM results when compared to those 2 methods.

Last, the noise statistics were analyzed via a Monte Carlo
simulation with 40 repetitions at NSR5 0.250. Global and
local phases were kept identical among repetitions to investi-
gate their effects on local noise characteristics. Figure 7
shows the SD of pixel intensities across 40 repetitions for
each reconstruction technique (see Supporting Table S1 for
values in 3 different ROIs). COMP shows high SD through-
out the spinal cord, except for regions of local signal cancel-
lations where SD is lower because of lower pixel intensities.
MAGN shows uniform SD throughout the spinal cord, with
SD levels matching that of COMP except in areas of local
signal cancellations. As expected, NLM-COMP and NLM-
MAGN have relatively lower SD than their non-filtered
counterparts. Furthermore, NLM filtering yields spatially

FIGURE 6 Comparison of ADC values with respect to the referenceADCmap. (A) Three ROIs are selected to analyze the effects of noise accumulation
and phase-related signal cancellations. ROI2 and ROI3 have phase issues, whereas ROI1 does not. ROI3 also has reduced SNR. (B) COMP andNLM-COMP
yield overestimated results in ROI1 as noise increases. Signal cancellations in COMP andNLM-COMP lead to overestimation of the ADCs in ROI2 and
ROI3, whereas noise accumulation inMAGN andNLM-MAGN result in underestimation of the ADCs especially in ROI3. MOD-FIT overestimates the ADC
values at higher noise levels, especially in ROI2 and ROI3. The proposed reconstruction is robust against noise in the ADC estimations in all 3 ROIs
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varying noise based on the signal level. MOD-FIT results in
the highest SD across all techniques, suffering especially in
the background regions with lower signal intensities. In con-
trast, the proposed PC-NLM yields the lowest SD in regions
without local signal cancellations. Even in cancellation
regions, the SD for PC-NLM does not exceed that of
MAGN. This can be attributed to the fact that, in the pres-
ence of excessive local phase variations, PC-NLM cannot
find a similar patch in other NEXs and therefore leaves the
central pixel unaveraged. Because filtered NEXs are then
magnitude averaged, the noise characteristics would then
match that of MAGN in this worst case. For noise statistics
in the presence of global phase only, see Supporting Figure
S5 and Supporting Table S1.

4.2 | In vivo experimental results

Figures 8A and 8B display the results in the first subject, for
single-channel and combined-channel DWI images with
diffusion-weighting in the A/P direction. The red arrows
indicate regions of signal cancellation in COMP and NLM-
COMP reconstructions. The blue arrows indicate regions of
noise amplification in MAGN, NLM-MAGN, and MOD-FIT
reconstructions, prominent in the inferior parts of the spinal
cord because of reduced local coil sensitivity. In contrast, the
proposed reconstruction suppresses signal cancellations and
noise amplification and ensures superior depiction of the spi-
nal cord even in the inferior regions. As a trade-off of noise
suppression, there is a slight loss of resolution in NLM-
COMP, NLM-MAGN, and PC-NLM (e.g., visible in the cer-
ebellum region in Figure 8). This effect is less pronounced
for the proposed method, thanks to the automated tuning of
the smoothing parameter.

The mean ADC values in the spinal cord were analyzed
by selecting 3 different ROIs (see red dashed circles in Fig-
ure 8B):

FIGURE 8 Results for in vivoDWI of the spinal cord for the first
subject. Images with diffusion-encoding along the A/P direction are dis-
played. (A) Reconstructions of single-channel images. Local signal can-
cellations because of phase errors are prominent in COMP and NLM-
COMP (red arrows). MAGN, NLM-MAGN, andMOD-FIT overcome
signal cancellations, but noise accrual or noise sensitivity occurs (blue
arrows). (B) Reconstructions of combined-channel images. Signal cancel-
lations (red arrows) are still present in COMP and NLM-COMP. Although
combining across channels improves depiction of the inferior parts of the
spinal cord, noise amplification remains a problem inMAGN and NLM-
MAGN. AlthoughMOD-FIT also benefits from combining across chan-
nels, the unnatural darkening in the background persists. In contrast, the
proposed reconstruction suppresses signal cancellations and noise amplifi-
cations. For the quantitative analyses of the meanADC values, 3 different
ROIs were selected, as marked on the DWI image fromCOMP. (C) ADC
maps for all reconstructions. The meanADC values in the selected ROIs
are listed in Table 1

FIGURE 7 Local noise statistics for the proposed and alternative
reconstructions at NSR5 0.250. COMP andMAGN result in comparable
high SD along the spinal cord, except in regions of signal cancellation
where SD for COMP decreases. NLM-COMP and NLM-MAGN have
reduced SDwhen compared to COMP andMAGN.MOD-FIT gives the
highest SD across all the reconstruction techniques, because of its noise
sensitivity. PC-NLMyields the lowest SD in regions without signal can-
cellations. In the problematic regions, SD of PC-NLM converges to that of
MAGN. See Supporting Table S1 for SD values in 3 different ROIs
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1. A region with no phase issues and relatively high SNR,

2. a region with local phase issues, and

3. a region with relatively low SNR, but no visible phase
issues.

Figure 8C shows the ADC maps generated by each method,
and Table 1 lists the mean and SD of ADC values in each
ROI and in each ADC map. The in vivo results listed in
Table 1 are consistent with the trends in Figure 6 for the
simulated DWI images. For example, in ROI1 where there
are no phase issues, we expect COMP to provide the most
accurate results. For that region, the proposed method yields
ADC values that closely match those of COMP, whereas
MAGN and NLM-MAGN underestimate and MOD-FIT
overestimates the ADC values, as expected. In ROI2 where
there are visible phase issues, COMP and NLM-COMP yield
unreasonably high ADC values. Comparing these results to
the simulation results in Figure 6B, one can presume that the
true ADC is somewhere in between the results of MAGN
and PC-NLM. Hence, we can deduce that MOD-FIT overes-
timates the ADC values for this ROI. In ROI3 where SNR is
low but there are no visible phase issues, COMP, NLM-
MAGN, and PC-NLM yield similar ADC values. MOD-FIT
and NLM-COMP give higher ADC values, while MAGN
yields lower ADC values, as predicted by high NSR cases in
ROI1 of Figure 6B. Importantly, the proposed method pre-
serves the accuracy of the ADC maps while improving
image quality, despite the presence of significant local phase
errors in the acquisitions.

Figure 9 shows the results for the second subject, where
DWI images and ADC maps are displayed for the case when
diffusion-weighting was in the A/P direction. Once again,
COMP and NLM-COMP reconstructions suffer from clearly

visible signal cancellation (red arrows) near the discs, which
in turn correspond to locations where nerve roots exit the
cord. The noise accumulation problem in MAGN and NLM-
MAGN is especially prominent near the pons and in the infe-
rior regions of the cervical spine. Although the results for
MOD-FIT and PC-NLM match visually for the DWI image,
the ADC map for MOD-FIT reveals overestimation problems
in regions of low signal intensity. The proposed PC-NLM
reconstruction provides visually improved image quality that
is devoid of signal cancellations in these regions, with high
fidelity ADC maps.

5 | DISCUSSION

High-resolution DWI is intrinsically SNR-starved. Although
complex averaging of multiple acquisitions offers improved
noise suppression when compared to magnitude averaging,
phase errors among multiple acquisitions lead to signal can-
cellations in combined images. We observed that these signal
cancellations are prominent in the spinal cord where substan-
tial local motion is present along the A/P direction. To the
best of our knowledge, this local-motion-induced signal can-
cellation problem in the spinal cord has not been reported in
the literature. Several factors might have contributed to this

TABLE 1 Mean and SD of ADC values

ADC
(3 1026 mm2/s)

ROI1 ROI2 ROI3

COMP 6966 191 15496 432 7426 240

NLM-COMP 6996 160 15576 420 8416 223

MAGN 6686 189 5496 255 6136 243

NLM-MAGN 6716 165 5586 233 7396 228

MOD-FIT 7206 196 6336 273 8646 265

PC-NLM (proposed recon) 6876 170 5706 247 7296 233

Signal cancellations in COMP and NLM-COMP result in overestimation of the
ADC values, whereas noise accumulation in MAGN and NLM-MAGN leads
to underestimation of the ADC values. MOD-FIT also overestimates ADC val-
ues, especially in ROI3 where the SNR is low. The proposed PC-NLM recon-
struction prevents signal cancellations while preserving the accuracy of the
ADC estimates.

FIGURE 9 Reconstructions from in vivoDTI acquisitions of the spi-
nal cord for the second subject. Images with diffusion-encoding along the
A/P direction are displayed. (A) DWI images are shown for the proposed
PC-NLM and alternative reconstructions. Note the suppressed noise level
and the lack of signal cancellations with the proposed reconstruction. (B)
The corresponding ADCmaps
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problem remaining elusive in clinical settings. First, DWI
acquisitions are most commonly performed in the brain
where local motion may not be as problematic as in the spi-
nal cord. Second, the majority of DWI acquisitions are per-
formed using ss-EPI followed by magnitude averaging
across acquisitions. Last, even in the case of complex averag-
ing, the described signal cancellation problem is encountered
in a subset of the subjects that we have imaged during our
studies. The relative infrequency of this problem makes it all
the more important that it should be avoided, as signal can-
cellation may otherwise be mistaken for increased diffusion
because of pathology.

The proposed reconstruction scheme incorporates a new
PC-NLM filter that increases the image SNR via averaging
across pixels with highly similar patches. Importantly, the
search for similar patches takes into account both the magni-
tudes and the phases of the patch pixels. Although a few of
the previous studies applied denoising on complex DWI
data, they were restricted to single acquisitions (i.e., no repe-
titions to average).48,49 Here, the PC-NLM filter performs
averaging to simultaneously suppress signal cancellations
because of phase errors and reduce noise amplification. Our
results demonstrate that when NSR� 0.125, the proposed
reconstruction achieves higher PSNR and SSIM values than
methods based on magnitude averaging. In addition, it yields
comparable image quality to methods based on complex
averaging, but without signal cancellation artifacts.

When compared to Rician noise model fitting, the pro-
posed reconstruction has higher PSNR and SSIM for
NSR� 0.100, while providing reliable ADC values even in
low SNR regions. The problems of model fitting are exacer-
bated at low SNR cases and especially for fewer NEXs. For
example, when the in vivo data from the first subject is
reconstructed for NEX5 8 or NEX5 4 (i.e., using only a
subset of the 16 acquisitions), the performance of model fit-
ting severely deteriorates (see Supporting Figure S6 for a
comparison of all techniques for NEX5 8 and NEX5 4).
This result is expected, as model fitting becomes increasingly
challenging with fewer samples to fit. Another problem of
model fitting is that it assumes the magnitude DWI images
to follow a Rice distribution. In reality, however, both refo-
cusing and partial k-space reconstructions remove slowly
varying phase information from images. In addition, partial
k-space reconstruction fills the missing half of k-space using
the acquired part. These processes cause the complex noise
to deviate from a white Gaussian distribution, and thereby
cause the magnitude DWI images to deviate from a Rice dis-
tribution. As such, in pixels where the signal and SD of noise
are comparable, ML estimation can fail to find a non-
negative fit for the true signal intensity. Here, we assigned a
small albeit non-zero value of rg/100 to those pixels. Then,
ADC can be under or overestimated depending on how the
assigned value compares with the true signal intensity. Yet,

this procedure is preferable to assigning a 0 value that would
yield infinitely large ADC estimations. In contrast to these
problems of model fitting, PC-NLM provides visually
improved image quality even at reduced number of acquisi-
tions, yielding reliable ADC estimates and successfully
avoiding signal cancellation artifacts.

Signal cancellation artifacts because of motion-induced
phase errors may also be mitigated to a certain extent with car-
diac gating, if the cardiac synchronization is optimized to
acquire the data at the periods of relative quiescence (e.g.,
starting �320 ms after the cardiac trigger signal).50 This
approach may especially be useful for multi-shot acquisitions
to alleviate phase inconsistencies among interleaved data,
where the proposed method cannot be used in its current form.
Although gating was not performed for the single-shot multi-
ple-NEX in vivo data in this study, using a cardiac-gated
acquisition can further increase the performance of the pro-
posed reconstruction. It should be noted that cardiac-gating
based approaches prolong the scan time considerably, espe-
cially when multiple averages are needed to increase the SNR.
PC-NLM solves the signal cancellation issue while increasing
the SNR, without the expense of prolonged scan time.

A potential limitation of the proposed reconstruction
relates to the trade-off between noise suppression and spatial
resolution, inherent to filtering. One way to mitigate resolu-
tion loss is to restrict the smoothing parameter to small val-
ues. Note that the smoothing parameter directly affects
image quality, as well as the tolerance to magnitude differen-
ces and phase errors among neighborhoods. As the smooth-
ing parameter increases, magnitude and phase differences
become more tolerable, causing increased averaging and
thereby blurring in the final image. To minimize potential
losses in resolution, we compute the smoothing parameter
before the POCS step that can amplify high frequency noise.
We also set b5 0.5, as typically done to minimize resolution
loss in low-noise cases.20 When reconstructions were per-
formed with b5 1 instead, excessive image blurring
occurred (results not shown). In future work, we plan to
investigate the benefits of spatially adaptive selection of the
smoothing parameter based on local SNR variations in the
image (e.g., because of locally varying coil sensitivities).11

This approach could better preserve resolution in high-SNR
regions like the pons or cerebellum, while successfully
denoising regions with lower coil sensitivities such as the
inferior cervical spine.

In spinal cord imaging, novel approaches that apply high
b-value and/or axial acquisitions with NEX5 1 are
emerging.46,51–54 Because PC-NLM targets multi-acquisition
imaging, it does not have a direct application for NEX5 1
cases. Nevertheless, the phase issues described in this work
should inform the handling and acquisition of interleaved
data. Note that ss-EPI with multiple acquisitions is still the
most frequently used sequence in clinical settings. Although
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this work especially targeted that sequence, given its robust-
ness against reduced SNR, we expect PC-NLM to perform
equally well for high b-value imaging. For axial imaging of
the spinal cord, we expect a potentially uniform phase over
the cord, varying across acquisitions. Note that the phase
over the cord would still be different than that of the back-
ground tissue, creating similar signal cancellation problems
that might be overcome with the proposed PC-NLM recon-
struction. In vivo demonstration of PC-NLM for non-sagittal
orientations remains a future work.

In this work, we examined NLM filtering for spinal cord
DWI unlike most of the prior work on NLM that focused on
brain imaging. It could be hypothesized that morphological
differences between the 2 anatomies might alter NLM’s over-
all efficacy. Yet, we set the neighborhood size and search vol-
ume parameters for PC-NLM to d5 1 and M5 5 based on
previously shown optimum values for NLM in the brain.20

When we tested different d and M values in our simulation
framework for spinal cord DWI, we found that the image
quality degrades with larger values of d, and the algorithm is
nearly insensitive to changes in M (results not shown). These
observations fully agree with those in Coupe et al.20 The
strong agreement between our observations and the reports in
Coupe et al.20 could be attributed to a trade-off between the
pixel count and signal heterogeneity. On the one hand, the
pixel count is greater in the brain especially when compared
to reduced-FOV spinal images. This potentially leads to a
smaller number of similar patches to average in the spinal
cord. On the other hand, the brain features a variety of differ-
ent structures when compared to the homogeneous appear-
ance of the spinal cord. In turn, the number of patches to
average are increased in the spinal cord. Our results indicate
that these 2 counteracting factors balance each other to yield
consistent NLM performance in the brain and the spinal cord.

One of the in vivo results in this work incorporated a
DTI data set, where the proposed method was demonstrated
for only DWI along the A/P direction. For DTI and connec-
tivity analyses, signal cancellations can alter the fractional
anisotropy (FA) maps, which in turn can lead to incorrect
estimation of the principle diffusion direction. In such cases,
a modified version of the proposed reconstruction that takes
into account the images from all diffusion directions may
improve the quality of the FA maps. Although we have
recently presented a preliminary analysis of this problem,55 a
detailed analysis that demonstrates the effects of the phase
errors on the integrity of the FA maps and connectivity
measures remains a future work.

6 | CONCLUSIONS

In this work, we have proposed a new PC-NLM reconstruc-
tion that reduces noise and suppresses signal cancellations

because of motion-induced phase in DWI. This technique
preserves the details of DWI images and improves image
quality while yielding accurate ADC maps. Extensive simu-
lations and in vivo DWI in the spinal cord of healthy subjects
demonstrate the improved performance of the proposed tech-
nique over both magnitude averaging and complex averaging
following global phase correction.
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SUPPORTING INFORMATION

Additional Supporting Information may be found online in
the supporting information tab for this article.

FIGURE S1 Phase images from each acquisition for the
case when diffusion-encoding is along the A/P direction.
Four out of 16 acquisitions are displayed explicitly. For
each acquisition, phase images from 4 channels out of 6
are displayed following a refocusing reconstruction to cor-
rect for global phase errors and a partial k-space recon-
struction (the remaining 2 channels are not shown as they
contained noise only). These local phase problems occur at
exactly the same position for images obtained from all
receive channels, indicating that they in fact stem from
anatomical sources.
FIGURE S2 Local phase problems in DWI of the cervical
spine for different diffusion-encoding directions. (A, C, E)
Magnitude and phase of each acquisition when diffusion-
encoding is along A/P, S/I, and R/L directions, displayed
following a global phase correction and a partial k-space
reconstruction. (B, D, F) The results of complex averaging
(COMP) and magnitude averaging (MAGN) across multi-
ple acquisitions. MAGN results in noise accumulation for
all diffusion encoding directions. COMP, on the other
hand, suffers from signal cancellations because of local
phase problems (shown by red arrows), which are promi-
nent when the diffusion-encoding is along the A/P direc-
tion. These phase problems occur at the positions where

the nerve roots exit the spinal cord, which is consistent
with the literature on nerve root pulsations in the same
direction, synchronized to heart and CSF pulsations.
FIGURE S3 Diffusion-weighted images from DTI of the
spinal cord in 12 different directions. The results are shown
for complex averaging (COMP) and magnitude averaging
(MAGN). The vectors on top of the images indicate the
direction of diffusion encoding: [S/I A/P R/L], respectively.
We observed that whereas local signal cancellations are
visible in many of the images, they are most prominent
when the diffusion-encoding direction has a significant
component along the A/P direction (e.g., [0 1 0] case dis-
played in red box).
FIGURE S4 DWI simulation results at NSR5 0.250 for
the case of global phase only and the case of both global
and local phase errors. (A) Magnitude and phase of each
of the acquisitions for the simulated data without any local
phase errors, displayed following a global phase correction
and a partial k-space reconstruction. (B) Results of alterna-
tive reconstructions and the proposed method are depicted.
Note the suppressed noise in the proposed reconstruction
when compared to MAGN and NLM-MAGN. Because
there are no local phase errors, COMP and NLM-COMP
do not show any signal cancellations. NLM-COMP
improves image SNR when compared to COMP. MOD-
FIT results in an unnatural look, especially in low signal
intensity regions. The proposed method has comparable
image quality to that of NLM-COMP. (C) Magnitude and
phase of each of the acquisitions for the simulated data
with both global and local phase errors, displayed follow-
ing a global phase correction and partial k-space recon-
struction. Phase errors, shown by red arrows, are added to
the DWI images with the diffusion-encoding along the A/P
direction. (D) Results of alternative reconstructions and the
proposed method are depicted. Signal cancellations because
of phase errors are prominent in both COMP and NLM-
COMP. Likewise, high-level noise causes noise accumula-
tion in MAGN and the preceding NLM filter is not suffi-
cient to overcome this issue in NLM-MAGN. The
performance of MOD-FIT is almost unchanged, with a
darkening in the background regions. On the other hand,
the proposed PC-NLM renders a solution without any
phase cancellations while suppressing noise.
FIGURE S5 Local noise statistics for all reconstruction
techniques at NSR5 0.250, for the case of global phase
only and the case of both global and local phase errors.
(A) For global-phase-only case, COMP and MAGN result
in comparable high SD. MOD-FIT has the highest standard
deviation among all reconstruction techniques, because of
its noise sensitivity. NLM-COMP and NLM-MAGN have
relatively reduced SD when compared to their non-filtered
counterparts. PC-NLM yields the lowest SD, demonstrating
robustness against noise. (B) For the case of both global
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and local phase errors, the noise statistics are almost
unchanged for MAGN, NLM-MAGN, and MOD-FIT, as
expected. In regions of signal cancellations, SD for COMP
and NLM-COMP are reduced because of lower pixel inten-
sities in those regions. PC-NLM yields the lowest SD in
regions without signal cancellations. In cancellation
regions, SD of PC-NLM is slightly lower than that of
MAGN. The noise statistics in 3 different ROIs (marked
over the COMP image in A) are listed in Supporting
Table S1.
FIGURE S6 Results for in vivo DWI of the spinal cord
for the first subject for (A) NEX5 8 and (B) NEX5 4
(i.e., using only a subset of the 16 acquisitions). As NEX
is reduced, the image qualities for COMP, NLM-COMP,
and MOD-FIT significantly deteriorate. The number and
extent of signal cancellation regions are increased for
COMP and NLM-COMP, as the likelihood of having a
NEX with similar phase is reduced when there are fewer
NEXs. The image quality for MOD-FIT especially suffers
in inferior parts of the spine (shown by blue arrows)

because of reduced coil sensitivities. This problem is fur-
ther exacerbated as NEX is reduced, as model fitting
becomes more challenging when there are fewer samples
for a low-SNR pixel. MAGN, NLM-MAGN, and PC-NLM
show lower SNR with reduced NEX, but the image qual-
ities are not affected otherwise. Overall, when compared to
the other reconstruction techniques, PC-NLM has visibly
improved image quality at both NEX5 8 and NEX5 4,
and it does not suffer from local signal cancellations or
noise accumulation problems.
TABLE S1 Noise statistics in 3 different ROIs for the
results in Supporting Figure S5.
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