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A B S T R A C T

Chest X-ray is an essential diagnostic tool in the identification of chest diseases given its high sensitivity
to pathological abnormalities in the lungs. However, image-driven diagnosis is still challenging due to
heterogeneity in size and location of pathology, as well as visual similarities and co-occurrence of separate
pathology. Since disease-related regions often occupy a relatively small portion of diagnostic images, classifi-
cation models based on traditional convolutional neural networks (CNNs) are adversely affected given their
locality bias. While CNNs were previously augmented with attention maps or spatial masks to guide focus on
potentially critical regions, learning localization guidance under heterogeneity in the spatial distribution of
pathology is challenging. To improve multi-label classification performance, here we propose a novel method,
HydraViT, that synergistically combines a transformer backbone with a multi-branch output module with
learned weighting. The transformer backbone enhances sensitivity to long-range context in X-ray images,
while using the self-attention mechanism to adaptively focus on task-critical regions. The multi-branch output
module dedicates an independent branch to each disease label to attain robust learning across separate disease
classes, along with an aggregated branch across labels to maintain sensitivity to co-occurrence relationships
among pathology. Experiments demonstrate that, on average, HydraViT outperforms competing attention-
guided methods by 1.9% AUC and 5.3% MAE, region-guided methods by 2.1% AUC and 8.3% MAE, and
semantic-guided methods by 2.0% AUC and 6.5% MAE in multi-label classification performance.
1. Introduction

The prevalence of thoracic diseases is a growing concern that poses
a significant threat to human health. Lung cancer, the second most
common cancer globally, accounts for 11%–12% of all cancer cases and
is responsible for approximately 18% of cancer-related deaths [1]. As-
piration pneumonia, another aggressive thoracic disease, is responsible
for about 2%–3% of all deaths in developed countries [2]. A prominent
imaging technology for early diagnosis of these deadly conditions is
chest X-ray (CXR), which is cost-efficient compared to other common
modalities. However, the ever-increasing number of CXR scans, com-
plex pathologies, variable lesion sizes, and subtle texture changes can
compromise the accuracy of radiological readings. These challenges are
further exacerbated by operator biases in developing countries with
relatively limited accumulation of radiological expertise [3]. Therefore,
the development of computer-aided diagnosis (CAD) algorithms that
can automatically diagnose thoracic diseases from CXR scans can serve
to improve efficiency and accuracy in radiological assessments.
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The mainstream CAD approach for diagnosing thoracic diseases
rests on the extraction of CXR features to help identify and locate
pathological regions, followed by classification based on the extracted
features to identify the presence of diseases [4,5]. In cases where only
a single type of pathology exists per subject, a multi-category classifi-
cation problem would have to be solved by assigning each CXR image
to an exclusive disease category by selecting the label with the highest
predicted probability [6]. Yet, separate pathology or multiple instances
of a given pathology frequently co-occur in CXR images of individual
subjects, rendering diagnosis a multi-label classification problem in-
stead [7]. This significantly increases problem difficulty since a CXR
image might have to be assigned simultaneously to multiple disease
categories by identifying the subset of labels whose multivariate prob-
ability is the highest among all possible subsets. In the face of these
challenges, convolutional neural networks (CNNs) have arguably be-
come the de facto standard in extraction of CXR features, given their
efficiency in learning visual features for downstream imaging tasks [8,
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9]. However, CNNs often suffer from suboptimal performance during
identification of complex pathology in thoracic diseases due to several
reasons: (1) The size, location and appearance of pathology in CXR
images show high variability across disease classes and across subjects.
Since CNN models use compact local filters with static weights for
feature extraction, their generalization abilities can be compromised
given the anatomical variability of pathology encountered in CXR
images. (2) Multiple different pathology can co-occur in CXR images of
a single subject, albeit the co-occurrence statistics of simultaneously-
present pathology show high heterogeneity across disease classes [7].
CNN models are typically trained conventional softmax output layers,
primarily devised for multi-category classification problems relying on
exclusivity among classes. However, these output layers can have diffi-
culty in handling multi-label classification of CXR images, as they try to
compromise between sensitivity to individual classes versus sensitivity
to co-occurrence relationships among classes [10].

Recent studies have considered advanced approaches to improve
performance in multi-label CXR classification. A first group of CXR
studies have proposed to augment CNN models with attention mod-
ules or attention-based masks in order to improve network focus on
small-sized pathology [4,11–15]. Despite the efficiency and promising
performance of attention-augmented CNNs, they can still show limited
capture of the long-range context under multiple distributed or large-
sized lesions, and limited generalization performance across subjects. A
second group of studies have instead proposed vision transformer (ViT)
models based on self-attention mechanisms to improve capture of long-
range context and to improve generalization [16,17]. The transformer
architecture has been extensively utilized in a myriad of image-based
applications, encompassing image segmentation, object detection, clas-
sification, and other pertinent tasks, demonstrating its versatility across
diverse domains [18–20], albeit often at the expense of elevated com-
putational load. To maintain a desirable trade-off between performance
and efficiency, hybrid models that integrate CNN and ViT blocks have
also been proposed [5,11,21–25]. While these deep learning models
have been adopted to learn representative features in multi-label CXR
studies, they often neglect to-occurrence relationships between sep-
arate pathology [12,16,26,27]. Pre-defined hierarchical relationships
between pathology labels have been considered previously to construct
multi-label CXR classifiers [28,29]. However, these previous methods
are typically trained to optimize the prediction accuracy for an aggre-
gate output vector across classes, yielding heterogeneous classification
performance across individual pathology labels.

Here, we introduce a novel adaptive multi-branch transformer
model for multi-label disease classification from CXR images, named
HydraViT. Our proposed model leverages a hybrid architecture com-
posed of a convolutional spatial encoder module to efficiently extract
feature maps of CXR images, and a transformer-based context encoder
module to capture long-range contextual relationships across image
patches and co-occurring pathology. To avoid bias due to co-occurrence
patterns among disease labels, multi-task learning is performed based
on a multi-branch output layer as inspired by recent machine learning
studies [30,31]. Yet, differently from previous studies on multi-task
learning, we propose a novel loss function that adaptively weights
each output branch to further improve the learning of pathology co-
occurrences. To our knowledge, HydraViT is the first model in the
literature that adopts multi-task learning for each pathology label in
multi-label CXR classification. Our main contributions are summarized
below:

• HydraViT is a novel hybrid convolutional-transformer model that
performs multi-tasking to improve reliability in multi-label dis-
ease classification from CXR images.

• HydraViT uses a transformer-based context encoder to capture
long-range context and co-occurrence relationships between dis-

tinct pathology.
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• HydraViT uses distance-based adaptive weights to account for
variable co-occurrence statistics between separate pathology and
thereby improve the homogeneity of model performance across
classes.

The remainder of this paper is structured as follows: Section 2
presents a comprehensive literature review on multi-label CXR classifi-
cation. Section 3 delineates the theoretical underpinnings and details of
the proposed model. Section 4 elaborates on the experimental setup and
provides a thorough account of parametric details. Section 5 reports
ablation studies on model components and comparison studies against
state-of-the-art baselines. Finally, Section 6 concludes with discussions
on findings, limitations and future work.

2. Related work

2.1. Deep learning for CXR classification

The traditional framework for automated analysis of CXR images
rests on the use of hand-constructed features and manual operator in-
tervention, which undermine classification performance [32,33]. With
the advent of deep learning, performance leaps have been attained in
CXR analysis based on a variety of different CNN architectures [34–36].
Several lines of improvements in CNN models have been considered
including deeper architectures [26], integration of recurrence depen-
dencies [37], pyramidal architectures [17], quantum-classifier-based
architectures [38], fusion-based architectures [39] and ensemble archi-
tectures to capture a diverse array of features [14,24,35,40–42]. Among
recent studies on CNN-based CXR classification, [27] uses deep feature
selection to extract most informative image features, [43] utilize CXR
images and cough sounds to enhance performance. [7] uses feature
selector and integrator branches to learn discriminative features of
pathology. [25,44,45] use graph features to capture semantic similari-
ties between image features. [46,47] employ optimization techniques
to identify more effective sets of features, which in turn help im-
prove classification performance. Several recent studies have employed
diffusion-based methods [48,49] to improve feature reliability based on
stable diffusion [50] and latent diffusion models [51].

A primary limitation of conventional CNN models concerns the use
of static, local filter weights that can compromise generalization to
atypical anatomy that varies in size, location, shape across subjects.
Recent CXR classification studies have considered to use attention
mechanisms either as augmentation to CNN backbones or as self-
attention in ViT backbones to improve generalization and to guide
the focus of the model towards disease-relevant regions [4,12,13,15].
Multiple attention mechanisms across different dimensions have been
deployed including combination of channel, element, scale attention [5,
52], channel and spatial attention [7,16], class and label attention [6,
22], and multi-head self-attention [17]. Among recent studies, [11]
proposes PCAN that uses a pixel-wise attention branch. [21] proposes
Thorax-Net with an attention branch to exploit the correlation between
class labels and locations of pathology. DuaLAnet by [24] includes
two asymmetric attention networks to extract more discriminative fea-
tures. [23] introduces PCSANet that uses a shuffle attention module to
prioritize features related to pathology. Although these previous meth-
ods have focused on architectural improvements to CXR classification
models so as to extract task-relevant features by focusing on pathology,
they can elicit heterogeneous classification performance when multiple
co-occurring pathologies are present in multi-label classification tasks.
To address this limitation, HydraViT uniquely uses multi-task learning
with a separate output branch for each label and adaptively weights

each branch to cope with variable co-occurrence statistics across labels.
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Fig. 1. HydraViT consists of a CNN-based spatial encoder module, a transformer-based context encoder module, and a multi-branch output module to maintain sensitivity to
individual labels and to capture label co-occurrence relationships in multi-label CXR classification.
2.2. Multi-label classification

A common approach for multi-label CXR classification is based on
model training via a multi-label cross-entropy loss expressed over a
multi-dimensional output vector that spans across all examined classes
produced by a softmax layer [5,14,26,34,53]. However, this conven-
tional approach can compromise sensitivity to individual labels and can
elicit suboptimal capture of co-occurrence relationships between sepa-
rate labels [13,24]. To improve the learning of co-occurrence statistics
between labels, a group of studies propose to refine label predictions via
add-on network modules such as a co-occurrence module [54], a graph
module [55,56], a recurrent module [37], label correlation guided
discriminative learning [57], or a spatial-and-channel encoding mod-
ule [7] to capture the semantic dependencies between separate labels.
As an alternative approach, other studies propose to use modified loss
functions such as weighted cross-entropy [58] or multi-label softmax
losses [59] to leverage correlations among labels for improved classifi-
cation performance. Commonly, these previous studies help emphasize
label co-occurrence relationships during class predictions. However,
since they utilize a single multi-dimensional output vector, they can
be suboptimal in preserving sensitivity to individual labels. A recent
study aimed to address this issue by an ensemble CNN model, where
a separate CNN predicted the label for each class [60]. While this
improves sensitivity to individual labels, it ignores label co-occurrence
relationships.

To attain sensitivity to both individual labels and their co-occurrence
relationships, HydraViT employs a multi-branch output module that
maps contextual embeddings extracted by its transformer-based en-
coder onto class labels. Unlike previous multi-label methods, HydraViT
simultaneously uses segregated uni-dimensional output variables for
each individual label and an aggregated multi-dimensional output vec-
tor across labels. Adaptive weights are assigned to each output variable
prior to the calculation of cross-entropy losses, augmented with a
consistency loss between the individual and aggregated outputs to
maintain consistency between their predicted pathology labels. While
several imaging and computer vision studies have considered the use
of separate network branches for each individual label in classification
models [30,31,60], no previous study has proposed concurrent use of
individual and aggregated branches whose predictions are aligned with
a consistency loss to our knowledge.
3 
3. Theory

3.1. Problem definition

Let us assume a training set of CXR images and corresponding dis-
ease labels

{

𝑥𝑖, 𝑦𝑖
}𝑁
𝑖=1, where 𝑁 is the number of training samples. 𝑥𝑖 ∈

R𝐻,𝑊 is 𝑖th image with (𝐻 , 𝑊 ) denoting the image size across spatial
dimensions. 𝑦𝑖 ∈ Z𝐶2 is the 𝐶-dim label vector where 𝐶 is the number of
disease classes, and 𝑦𝑐𝑖 ∈ {0, 1} serves as an indicator for the 𝑐th class (0:
absent, 1: present). To learn the required mapping for multi-label classi-
fication, i.e., 𝑓 ∶ 𝑥𝑖 → 𝑦𝑖, a mainstream approach employs cross-entropy
loss [5,12–14,21,45,58]. Yet, conventional cross-entropy loss reflects
an aggregate measure across all disease labels, so it does not explicitly
consider the co-occurrence relationships among distinct pathology. In
turn, a simple adoption of cross-entropy loss in multi-label classification
can result in suboptimal performance.

3.2. HydraViT

To address the above-mentioned problems, HydraViT leverages
multi-task learning based on a hybrid architecture where a CNN-
based spatial encoder extracts lower-dimensional maps of local features
followed by a transformer-based context encoder captures contextu-
alized embeddings within and across pathologies in the input CXR
image (Fig. 1). Multi-task learning is then exercised via a synergistic
combination of dedicated output variables for each individual label
and a multi-dimensional output vector aggregated across labels. To
maintain sensitivity to both individual labels and label co-occurrence
relationships, the learnable weighting of output variables is used in
conjunction with a consistency loss between the individual and aggre-
gated output variables. Network components and learning procedures
for HydraViT are described below.

3.2.1. Spatial Encoder (SE)
The CNN-based SE module with parameters 𝜃𝑆𝐸 is used to extract

local spatial features of CXR images and lower dimensionality of feature
maps prior to context encoding. Given the input image 𝑥𝑖, a low-
dimensional latent representation 𝑚𝑖 ∈ R𝐻,𝑊 ,𝑧 is derived as 𝑓𝑆𝐸 ∶ 𝑥𝑖 →
𝑚𝑖, where 𝑧 is the dimensionality of feature channels:

𝑚𝑖 = 𝑃𝑜𝑜𝑙
(

𝜎
(

𝐶𝑜𝑛𝑣
(

⋯𝑃𝑜𝑜𝑙
(

𝜎
(

𝐶𝑜𝑛𝑣
(

𝑥𝑖
)))

⋯
)))

(1)

where 𝑃𝑜𝑜𝑙 denotes a maximum pooling layer across a 2 × 2 neigh-
borhood for two-fold downsampling, 𝜎 is an ReLU activation function,
𝐶𝑜𝑛𝑣 denotes a convolutional block.
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3.2.2. Context Encoder (CE)
The transformer-based CE module with parameters 𝜃𝐶𝐸 projects

spatially-encoded feature maps onto contextualized embedding vectors,
𝑓𝐶𝐸 ∶ 𝑚𝑖 → 𝐸𝑖, to capture long-range spatial relationships both
within and across individual pathologies. For this purpose, 𝑚𝑖 from the
SE module is split into 𝑁𝑝 = 𝑟2∕𝑃 2 non-overlapping patches of size
(𝑃 , 𝑃 ) with 𝑃 = 𝑟∕2, and flattened to 𝑧𝑃 2-dimensional vectors. The
transformer encoder first projects the flattened patches onto an 𝑁𝐷-
dimensional space through learnable linear projections and positional
encodings:

𝐸0
𝑖 =

[

(

𝑚𝑖
)1 𝑃𝐸 ;

(

𝑚𝑖
)2 𝑃𝐸 ;⋯ ;

(

𝑚𝑖
)𝑁𝑃 𝑃𝐸

]

+ 𝑃 𝑝𝑜𝑠𝐸 (2)

where 𝐸0
𝑖 ∈ R𝑁𝑝 ,𝑁𝐷 denote patch embeddings, (𝑚𝑖)𝑝 ∈ R𝑃 2 denotes

the 𝑝th patch, 𝑃𝐸 and 𝑃 𝑝𝑜𝑠𝐸 are the linear projections and positional
encodings, respectively. Next, path embeddings are processed via 𝐿
transformer blocks, each comprising a cascade of layer normalization
(𝑁𝑜𝑟𝑚), multi-head self-attention (𝑀𝐻𝑆𝐴), and multi-layer perceptron
(𝑀𝐿𝑃 ) layers [61]. The 𝑙th block performs the following computations:

𝐸̄𝑙𝑖 =𝑀𝐻𝑆𝐴
(

𝑁𝑜𝑟𝑚
(

𝐸𝑙−1𝑖
))

+ 𝐸𝑙−1𝑖 (3)

𝐸𝑙𝑖 =𝑀𝐿𝑃
(

𝑁𝑜𝑟𝑚
(

𝐸̄𝑙𝑖
))

+ 𝐸̄𝑙𝑖 (4)

The output of the CE module 𝐸𝐿𝑖 is taken as the contextualized em-
bedding vector 𝐸𝑖. Please note that the conventional output head in a
transformer encoder would map the embedding vector onto activations
𝑜1,…,𝐶
𝑖 in 𝐶 output neurons, and leverage a softmax function (𝜍) to

compute probabilities for separate classes: 𝜍(𝑜𝑗𝑖 ) = 𝑒𝑜
𝑗
𝑖

∑𝐶
𝑘=1 𝑒

𝑜𝑘𝑖
, for 𝑗 =

1,… , 𝐶. Because this formulation enforces a single class to dominate
over the remaining classes in the output vector, it can be ineffective in
capturing co-occurrence relationships between separate labels.

3.2.3. Multi-Branch Output (MBO)
Given 𝐸𝑖, the MBO module computes 𝐶 uni-dimensional output

variables for each label 𝑦̃1𝑖 , 𝑦̃
2
𝑖 ,… , 𝑦̃𝐶𝑖 such that {𝑦̃𝑐𝑖 ∈ R1 ∶ 0 ≤ 𝑦̃𝑐𝑖 ≤ 1},

along with a multi-dimensional output vector aggregated across labels
𝑦̃𝐴𝑖 ∈ R𝐶 such that {[𝑦̃𝐴𝑖 ]

𝑐 ∈ R1 ∶ 0 ≤ [𝑦̃𝐴𝑖 ]
𝑐 ≤ 1}. The resultant mapping

is given as 𝑓𝑀𝐻𝑂 ∶ 𝐸𝑑𝑖 → [𝑦̃1𝑖 ], [𝑦̃
2
𝑖 ],… , [𝑦̃𝐶𝑖 ], [𝑦̃

𝐴
𝑖 ]. A learnable weight is

employed for each output variable 𝑤1, 𝑤2,… , 𝑤𝐶 , 𝑤𝐴 ∈ R1 to account
for label co-occurrence. These weights are initialized based on the
observed ratios of samples in the training set (i.e., 𝑤𝑐 = 𝑁∕

(

𝐶 ∗ 𝑁𝑐
)

for the 𝑐th class with 𝑁𝑐 training samples; 𝑤𝐴 = 1∕(𝐶+1)). The weights
are incorporated in the loss terms for model training:

Loss
(

𝑥𝑖, 𝑦𝑖
)

= 1
𝐶

𝐶
∑

𝑐=1
BCE

(

𝑦𝑐𝑖 , 𝑤𝑐 𝑦̃
𝑐
𝑖
)

+ MLCE
(

𝑦𝑖, 𝑤𝐴𝑦̃
𝐴
𝑖
)

+CL
(

𝛼
(

[𝑤1𝑦̃
1
𝑖 ,… , 𝑤𝐶 𝑦̃

𝐶
𝑖 ]
)

, 𝛽
(

𝑤𝐴𝑦̃
𝐴
𝑖
))

(5)

The proposed loss terms employ binary cross-entropy (BCE) loss terms
for each label in conjunction with a multi-label cross-entropy (MLCE)
loss term across labels to maintain sensitivity to both individual labels
and their co-occurrence statistics. The first term in Eq. (5) denotes BCE
loss expressed for each uni-dimensional output variable:

BCE (𝑦, 𝑦̃) = −
[

𝑦log (𝑦̃) + (1 − 𝑦) log (1 − 𝑦̃)
]

(6)

where 𝑦 and 𝑦̃ denote binary scalars that reflect the true and predicted
labels for a given class. The second term in Eq. (5) denotes MLCE loss
expressed for the multi-dimensional output vector as:

MLCE
(

𝑦𝐴, 𝑦̃𝐴
)

= 1
𝐶

𝐶
∑

𝑐=1

(

BCE
(

[𝑦𝐴]𝑐 , [𝑦̃𝐴]𝑐
))

(7)

where 𝑦𝐴 and 𝑦̃𝐴 denote binary vectors that reflect the true and
redicted labels across 𝐶 classes. The final term in Eq. (5) is consistency
oss that enforces the predictions from the individual and aggregated
utput variables to be consistent with each other:
( 𝐴,1 𝐴,2) ‖ 𝐴,1 𝐴,2‖
L 𝑦̃ , 𝑦̃ = ‖

‖

𝑦̃ − 𝑦̃ ‖

‖2
(8)
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here 𝑦̃𝐴,1 is formed by concatenating individual output variables
cross the label dimension and scaling the resultant vector by a factor
f 𝛼, and 𝑦̃𝐴,2 is derived from the aggregated output vector via scaling
y a factor of 𝛽. The scaling factors are taken as learnable parameters.
he training procedures for HydraViT based on the loss given in Eq. (5)
re described in Alg. 1. During inference on a test CXR image, 𝑥𝑞𝑖, the
redictions from the individual output variables, i.e., [𝑤1𝑦̃1𝑞𝑖,… , 𝑤𝐶 𝑦̃𝐶𝑞𝑖],
re used to generate the class predictions.

Algorithm 1: Training procedure for HydraViT

Input: Dataset:
{

𝑥𝑖, 𝑦𝑖
}𝑁
𝑖=1, 𝑥𝑖: CXR image, 𝑦𝑖: label

𝑓𝑆𝐸 : Spatial encoder with param. 𝜃𝑆𝐸
𝑓𝐶𝐸 : Context encoder with param. 𝜃𝐶𝐸
𝑦̃1,...,𝐶𝑖 : Individual output variables
𝑦̃𝐴𝑖 : Aggregated output vector
𝑂𝑝𝑡(): Optimizer for computing param. updates

utput: 𝜓 : {𝑤1, ..., 𝑤𝐶 , 𝑤𝐴, 𝛼, 𝛽, 𝜃𝑆𝐸,𝐶𝐸}
nitialize parameters.
or 𝑖 = 1:𝑁 do

Compute 𝑚𝑖, 𝑓𝑆𝐸 (𝜃𝑆𝐸 ) ∶ 𝑥𝑖 → 𝑚𝑖
Compute 𝐸𝑖, 𝑓𝐶𝐸 (𝜃𝐶𝐸 ) ∶ 𝑚𝑖 → 𝐸𝑖
Project onto individual branches, [𝑦̃1𝑖 ], [𝑦̃2𝑖 ], ..., [𝑦̃

𝐶
𝑖 ]

Project onto an aggregate branch, 𝑦̃𝐴𝑖
Compute BCE for individual branches via Eq. (6)
Compute MLCE for the aggregate branch via Eq. (7)
Compute Loss based on Eq. (5)
Update model parameters: 𝜓 ← 𝜓 − 𝑂𝑝𝑡

(

▿𝜓Loss
)

return 𝜓

4. Experimental setup

4.1. Dataset

Demonstrations were performed on the ChestX-ray14 dataset [62]
with 112,120 frontal-view images from 30,805 unique patients with
ages 1–95 years. Of these patients, 56.49% are male, and 43.51% are
female. The dataset includes labels for 15 classes for each CXR image,
including the ‘No Finding’ class for healthy individuals, and 14 differ-
ent pathologies (atelectasis, cardiomegaly, effusion, infiltration, mass,
nodule, pneumonia, pneumothorax, consolidation, edema, emphysema,
fibrosis, pleural thickening, and hernia). Note that the average size
of pathological regions is approximately 7.5% of the image size. The
classes except for ‘No Finding’ can be simultaneously present in a
given patient, yielding a multi-label classification problem. The ‘No
Finding’ class accounts for 53.83% of the total dataset with 60,412
samples. Major pathological abnormalities such as ‘Infiltration’ and
‘Effusion’ have sample sizes of 19,894 and 13,317, respectively, while
minor pathological abnormalities such as ‘Hernia’ and ‘Pneumonia’
have sample sizes of 227 and 1,431, respectively.

Prior to modeling, all CXR images were spatially downsampled to a
224 × 224 grid for computational efficiency. Data were split into train-
ing and test sets without any patient-level overlap, while preserving the
ratios between the number of samples for separate classes. The training
split contained 86,524 images, whereas the test split contained 25,596
images.

4.2. Implementation details

HydraViT leverages a hybrid network architecture with a spatial
encoder module, a context encoder module and a multi-branch out-
put layer. The spatial encoder module was implemented based on a
pre-trained VGG16 architecture [63] with 𝑧 = 512 and 𝑟 = 7. This
architecture consists of 13 convolutional layers with a 3 × 3 kernel
size, ReLU layers, 5 max-pooling layers with a 2 × 2 kernel size, and
3 fully connected layers (FCL). The context encoder module used a
pre-trained ViT architecture [64] with 12 transformer blocks with a

projection dimension of 512, 20 attention heads, 𝑃 = 4 resulting in
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Fig. 2. Multi-label CXR classification performance of HydraViT and variant models. Results are shown for a variant model that contained only the SE module 𝑓𝑆𝐸 that was
augmented with a softmax output layer for multi-label classification, a variant model that contained the SE and CE modules 𝑓𝑆𝐸 + 𝑓𝐶𝐸 augmented with a softmax output layer,
and a variant model that contained the SE and MBO modules 𝑓𝑆𝐸 + 𝑓𝑀𝐵𝑂 . Class-wise and class-average ROC curves for (a) 𝑓𝑆𝐸 , (b) 𝑓𝑆𝐸 + 𝑓𝐶𝐸 , (c) 𝑓𝑆𝐸 + 𝑓𝑀𝐵𝑂 , and (d) HydraViT;
and (e) class-wise and class-average AUC metrics for all models.
𝑁𝑃 = 4, and 𝑑 = 25,088. The 𝑤𝐴 value in the multi-head output block
was initialized as 1∕(𝐶 + 1). The 𝛼 and 𝛽 parameters were initialized
randomly in the range of [0 5]. HydraViT was implemented using the
5 
TensorFlow framework and executed on an NVidia RTX 3090 GPU.
Models were trained via the Adam algorithm with a batch size of 35, a
learning rate of 10−4, and 120 epochs.
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4.3. Competing methods

HydraViT was compared against several state-of-the-art deep-
learning models for multi-label CXR classification. Three main groups
of competing methods were considered: attention-guided, region-
guided, and semantic-guided methods.

4.3.1. Attention-guided methods
PCAN : Pixel-wise classification and attention network (PCAN) [11]

extracts mid-level CXR image features via a CNN, and uses pixel-wise
branches for classification.

𝐀3Net : Triple-attention learning (A3Net) [5] extracts features via
DenseNet121, and uses channel, element, scale attention.

CBAtt : Class-based attention (CBAtt) [22] extracts features via
ResNet50, and learns class-specific attention maps.

ConsultNet : ConsultNet [7] uses a two-branch architecture based
on DenseNet121, spatial and channel attention to learn discriminative
features.

DuaLAnet : Dual lesion attention network (DuaLAnet) [24] consists
of two asymmetric attention networks based on DenseNet169 and
ResNet152.

C-Tran: Classification transformer (C-Tran) [65] employs a trans-
former backbone for multi-label image classification by capturing in-
tricate relationships between visual features and labels.

4.3.2. Region-guided methods
TSCN : Two-stream collaborative network (TSCN) [14] creates a

egmentation mask via U-Net and performs feature extraction on the
asked region via DenseNet169.
WSLM : Weakly supervised localization method (WSLM) [12] gen-

erates masks for pathology-containing regions and performs feature
extraction via ResNet50.

RpSal: RpSal [42] extracts features via a pyramid network followed
y region proposal and saliency detection for simultaneous localization
nd classification.
LLAGnet : Lesion location attention guided network (LLAGnet) [13]

extracts features via DenseNet169, and uses weakly supervised atten-
tion to localize lesions in CXR images.

4.3.3. Semantic-guided methods
SEMM : SEMM [52] extracts semantic features via DenseNet121 that

are split into three branches using multi-map transfer learning. Features
are concatenated across branches following class-wise pooling.

CheXGCN : Label co-occurrence learning framework based on graph
convolution networks (CheXGCN) [45] extracts features via DenseNet
169, and captures co-occurrence relationships via a GCN.

SSGE : Semantic similarity graph embedding (SSGE) [44] constructs
a similarity graph from learned image features, and uses knowledge
distillation to capture semantic similarities.

TNELF : Triple network ensemble learning framework (TNELF) [41]
uses ensemble learning based on DenseNet169, ResNet50, and Efficient
Net-B4 backbones, and performs feature-wise concatenation for classi-
fication.

4.4. Performance evaluation

Model performance was characterized via the Area Under the Curve
(AUC) metric, which is commonly preferred for quantitative evaluation
of multi-label CXR classification results. To do this, the area under the
receiver operating characteristic (ROC) curve was first computed for
each class. These areas were then averaged across classes. A higher AUC
score indicates improved classification performance. Given a test set of
CXR image 𝑥𝑞 =

{

𝑥𝑞1, 𝑥𝑞2,… , 𝑥𝑞𝑁
}

, the AUC of a classification model
for the 𝑐th class is computed as:

𝐴𝑈𝐶 =

∑𝑁
𝑞𝑖=1

∑𝑁
𝑞𝑗=1 𝜉

(

𝑦𝑐𝑞𝑖 < 𝑦
𝑐
𝑞𝑗

)

𝜉
(

𝑦̃𝑐𝑞𝑖 < 𝑦̃
𝑐
𝑞𝑗

)

∑𝑁 ∑𝑁 𝜉
(

𝑦𝑐 < 𝑦𝑐
) (9)
𝑞𝑖=1 𝑞𝑗=1 𝑞𝑖 𝑞𝑗 e

6 
Table 1
Performance of HydraViT and ablated variant models are listed as average±std AUC
and MAE across labels. Results are shown for the subset of test samples where only
a single label is present, the subset of test samples where only multiple co-occurring
labels are present, and all test samples.

w/o 𝑓𝑀𝐵𝑂 w/o 𝑓𝐶𝐸 w/o 𝑦̃𝐴𝑖 w/o init. HydraViT

Aggregate AUC
Single 77.0 ± 8.5 76.8 ± 8.8 79.7 ± 8.8 78.0 ± 8.5 79.8 ± 8.6
Multiple 80.1 ± 4.4 83.7 ± 5.0 85.5 ± 4.1 85.8 ± 4.1 86.3 ± 3.6
All 79.0 ± 6.0 80.7 ± 6.3 83.3 ± 5.9 82.8 ± 6.0 83.8 ± 5.8

Aggregate MAE
Single 0.086 0.090 0.084 0.080 0.084
Multiple 0.083 0.077 0.071 0.075 0.069
All 0.085 0.082 0.075 0.079 0.076

where 𝜉(.) denotes an indicator function for the condition expressed via
its input argument. The AUC metric reflects the discriminative ability of
a classification model by quantifying the proportion of cases in which
the ranking of predicted labels is aligned with the ranking of true labels.

We also utilize the mean absolute error (MAE) metric to further
analyze the performance of the proposed technique. The MAE of a
classification model across classes is computed as:

MAE = 1
𝑁

𝑁
∑

𝑞𝑖=1

|

|

|

𝑦𝑞𝑖 − 𝑦̃𝑞𝑖
|

|

|

(10)

where 𝑦𝑞𝑖 is the vector of ground-truth labels across classes, and 𝑦̃𝑞𝑖 is
the output vector across classes for the 𝑞𝑖th test image. Note that MAE
is reported as an aggregate performance measure across classes.

5. Results

5.1. Ablation studies

Several ablation studies were conducted on the ChestX-ray14 dataset
to demonstrate the contribution of the individual components in Hy-
draViT to method performance. First, we examined the effect of the
spatial encoder, the context encoder, and the multi-branch output
modules. For this purpose, HydraViT that comprises all three modules
was compared against a variant that contained only the SE module
𝑓𝑆𝐸 that was augmented with a softmax output layer for multi-label
classification, a variant that contained the SE and CE modules 𝑓𝑆𝐸+𝑓𝐶𝐸
ugmented with a softmax output layer, and a variant that contained
he SE and MBO modules 𝑓𝑆𝐸 + 𝑓𝑀𝐵𝑂. Fig. 2 displays ROC curves

and respective AUC metrics for the compared models, separately for
each pathology label and on average across labels. On average across
labels, HybdraViT outperforms 𝑓𝑆𝐸 by 5.9%, 𝑓𝑆𝐸 + 𝑓𝐶𝐸 by 4.8%, and
𝑓𝑆𝐸 + 𝑓𝑀𝐵𝑂 by 3.1% AUC. We also find that 𝑓𝑆𝐸 + 𝑓𝑀𝐵𝑂 consistently
utperforms 𝑓𝑆𝐸 and that HydraViT consistently outperforms 𝑓𝑆𝐸+𝑓𝐶𝐸
cross labels. For these cases, the most notable improvements due to
he introduction of the MBO module are observed for relatively rare
abels such as ‘Cardiomegaly’, ‘Infiltration’, and ‘Pneumonia’ that often
o-occur with other pathology. This finding indicates the importance
f the MBO module over a conventional softmax classification layer in
ulti-label classification. We also observe that HydraViT consistently

utperforms 𝑓𝑆𝐸+𝑓𝑀𝐵𝑂 across labels, with more notable improvements
or labels such as ‘Nodule’, ‘Mass’, ‘Fibrosis’, and ‘Atelectasis’ where
athology can manifest with an atypical intensity distribution at both
ocal and global scale. This result indicates the importance of the
elf-attention mechanism in CE to capture local and global contextual
eatures of CXR images.

Next, we examined the benefits of the multi-task training of the
BO module in HydraViT for multi-label classification. HydraViT was

ompared against an aggregated variant that contained the SE and CE
odules 𝑓𝑆𝐸 + 𝑓𝐶𝐸 augmented with a softmax output layer based on

n aggregated output vector, and an ensemble variant that utilized
ultiple 𝑓𝑆𝐸 + 𝑓𝐶𝐸 models with uni-dimensional output variables

rained separately for each individual label. Fig. 3 illustrates classi-
ication performance for the compared models. Among the variants,

ither the aggregated or the ensemble variant yields better performance
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Table 2
Classification performance of competing methods on the ChestX-ray14 dataset. Results are shown for attention-guided, region-guided, and semantic-guided baselines along with
HydraViT. AUC for each pathology label is listed on separate rows; aggregate AUC is given as average±std across labels; aggregate MAE is given as average across labels. Bold
font marks the top performing method in each task.

Attention-guided methods Region-guided methods Semantic-guided methods

PCAN A3Net CBAtt ConsultNet DuaLAnet C-Tran TSCN WSLM RpSal LLAGnet SEMM CheXGCN SSGE TNELF HydraViT

Atelectasis 79.1 77.9 79.0 79.7 78.3 80.2 78.5 79.0 77.5 78.3 79.2 78.6 79.2 78.8 81.0
Cardiomegaly 88.7 89.5 91.0 90.9 88.4 90.4 88.7 91.0 88.1 88.5 88.1 89.3 89.2 87.5 90.4
Consolidation 75.9 75.9 76.0 77.9 74.6 82.0 75.4 74.0 74.7 75.4 76.0 75.1 75.3 75.6 82.2
Edema 85.4 85.5 86.0 85.8 84.1 87.1 84.9 86.0 84.6 85.1 84.8 85.0 84.8 85.4 88.2
Effusion 84.1 83.6 83.0 84.8 83.2 84.6 83.1 84.0 83.1 83.4 84.1 83.2 84.0 83.7 87.8
Emphysema 94.4 93.3 93.0 92.9 93.7 93.1 93.0 95.0 93.6 93.9 92.2 94.4 94.8 93.4 90.8
Fibrosis 81.9 83.8 82.0 83.4 82.0 82.6 83.3 84.0 83.3 83.2 83.3 83.4 84.0 85.1 84.5
Hernia 88.6 89.8 87.0 88.3 89.0 88.4 88.6 88.0 89.1 89.5 89.0 88.8 88.0 89.0 90.8
Infiltration 73.2 72.8 74.0 75.1 72.1 74.0 72.2 73.0 73.1 72.5 73.0 72.0 73.0 72.9 75.5
Mass 82.4 81.0 82.0 81.5 82.0 83.4 82.3 81.0 81.2 82.6 82.0 82.0 82.4 82.8 84.0
Nodule 78.4 78.5 79.0 78.4 78.6 79.4 78.2 79.0 78.6 78.8 79.1 79.2 79.0 78.7 80.0
Pleural Thickening 81.6 81.8 82.0 81.9 81.0 82.1 81.3 82.0 81.0 81.7 82.1 81.5 82.0 81.4 83.0
Pneumonia 74.3 74.5 73.0 75.0 74.0 74.1 73.6 73.0 74.0 74.2 74.0 74.3 74.0 74.0 75.8
Pneumothorax 85.3 86.0 86.0 85.8 85.0 86.0 85.7 85.0 85.2 85.4 85.3 85.6 85.2 85.4 87.6
Aggregate AUC 82.2 ± 5.8 82.1 ± 5.5 82.1 ± 5.9 82.6 ± 5.8 81.4 ± 5.4 83.3 ± 5.8 81.9 ± 5.6 82.2 ± 6.0 81.8 ± 5.5 81.9 ± 5.5 81.9 ± 5.5 82.2 ± 5.8 82.2 ± 5.8 82.1 ± 5.5 84.1 ± 5.4
Aggregate MAE 0.078 0.082 0.078 0.078 0.080 0.079 0.083 0.081 0.082 0.081 0.079 0.077 0.081 0.084 0.075
Fig. 3. Multi-label CXR classification performance of HydraViT and variant models. Results are shown for a variant model that trained a single 𝑓𝑆𝐸 + 𝑓𝐶𝐸 architecture with an
aggregated output vector across labels, and a variant model that ensembles separate 𝑓𝑆𝐸 + 𝑓𝐶𝐸 architectures trained for each individual label. Class-wise and class-average ROC
curves for (a) the aggregated variant, (b) the ensemble variant, and (c) HydraViT; and (d) class-wise and class-average AUC metrics for all models.
in some labels, and the two variants perform similarly in remaining
labels. That said, HydraViT consistently outperforms the two variants
across all labels. On average, HydraViT outperforms the aggregated
variant by 4.8% suggesting that multi-task training based on separate
output branches helps improve sensitivity to individual labels. Hy-
draViT also outperforms the ensemble variant by 9.4% suggesting that
the aggregated output branch in HydraViT helps improve capture of
co-occurrence relationships among pathology.

We also assessed the benefits of the MBO module, CE module,
aggregated output vector and MBO weight initialization in HydraViT
on classification performance for single versus multiple labels. A variant
that excluded the MBO module from HydraViT (w/o 𝑓𝑀𝐵𝑂), a variant
that excluded the CE module (w/o 𝑓𝐶𝐸), a variant that excluded the
aggregated output vector and the associated multi-label cross-entropy
7 
and consistency loss terms (w/o 𝑦̃𝑖𝐴), and a variant with zero initial-
ization of weights in the MBO module (w/o 𝑖𝑛𝑖𝑡.) were considered.
Table 1 lists the classification performance of the compared models
on the subset of test samples that contain only a single label, on the
subset of the test sample that contains multiple co-occurring labels,
and on the entire test set. We find that HydraViT outperforms the
variants in all cases, albeit performance benefits are more notable for
the multiple label case. In the single-label case, HydraViT outperforms
w/o 𝑓𝑀𝐵𝑂 by 2.8% AUC and 2.3% MAE, w/o 𝑓𝐶𝐸 by 3.0% AUC and
6.7% MAE, w/o 𝑦̃𝑖𝐴 by 0.1% AUC (albeit yields on par MAE), and w/o
𝑖𝑛𝑖𝑡. by 1.8% AUC (albeit yields lower MAE). In the multiple-label case,
HydraViT outperforms w/o 𝑓𝑀𝐵𝑂 by 6.2% AUC and 16.9% MAE, w/o
𝑓𝐶𝐸 by 2.6% AUC and 10.4% MAE, w/o 𝑦̃𝑖𝐴 by 0.8% AUC and 2.8%
MAE, and w/o 𝑖𝑛𝑖𝑡. by 0.5% AUC and 8.0% MAE. Across the entire
validation set, HydraViT outperforms w/o 𝑓 by 4.8% AUC and
𝑀𝐵𝑂
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Table 3
The number of model parameters, training time per image, and inference time per
image for HydraViT variants.

w/o f𝑀𝐵𝑂 w/o f𝐶𝐸 w/o (f𝑀𝐵𝑂+f𝐶𝐸) HydraViT

Parameters 409 M 17.8 M 17.1 M 409.7 M
Training time 273 ms 160 ms 156 ms 277 ms
Inference time 7.6 ms 5.0 ms 4.9 ms 7.9 ms

10.6% MAE, w/o 𝑓𝐶𝐸 by 3.1% AUC and 7.3% MAE, w/o 𝑦̃𝑖𝐴 by 0.5%
UC (albeit yields on par MAE), and w/o 𝑖𝑛𝑖𝑡. by 1.0% AUC and 3.8%
AE. Note also that HydraViT yields the lowest standard deviation

n AUC across labels, indicating an improvement in homogeneity of
lassification performance across distinct pathology.

A practical concern regarding CXR classification methods pertains
o the computational burden encountered during model training and
nference. Table 3 lists the number of model parameters, the training
ime per image and the inference time per image for HydraViT and its
blated variants. As expected, the CE module that contains transformer
omponents carries a notably higher proportion of model parameters
n comparison to the MBO module that is relatively light weight.
nalogously, the CE module also has a relatively higher influence on

he training and inference times.

.2. Comparison studies

We comparatively demonstrated the performance of HydraViT in
ulti-label CXR classification against several state-of-the-art methods

ncluding attention-guided (PCAN [11], A3Net [5], CBAtt [22], Con-
ultNet [7], DuaLAnet [24], C-Tran [65]), region-guided (TSCN [14],
SLM [12], RpSal [42], LLAGnet [13]), and semantic guided models

SEMM [52], CheXGCN [45], SSGE [44], TNELF [41]). Table 2 lists the
lassification performance of the competing models separately for each
athology label, and on average across labels. In terms of pathology
abels, the performance improvements offered by HydraViT are most
otable for ‘Atelectasis’, ‘Consolidation’, ‘Edema’, ‘Effusion’, ‘Mass’,

Pneumonia’, ‘Pneumothorax’ that can show a relatively broad spatial
istribution across CXR images. HydraViT yields comparable perfor-
ance to most baselines for labels such as ‘P-Thicknening’, ‘Infiltration’,

Fibrosis’, and ‘Cardiomegaly’. Meanwhile, several baselines can yield
igher performance than HydraViT for ‘Emphysema’, ‘Hernia’, ‘Nod-
le’. On average, HydraViT outperforms competing attention-guided
ethods by 1.9% AUC and 5.3% MAE, region-guided methods by 2.1%
UC and 8.3% MAE, and semantic-guided methods by 2.0% AUC and
.5% MAE. Furthermore, HydraViT also achieves the lowest standard
eviation in AUC across labels among competing methods, indicating
n improvement in homogeneity of classification performance across
istinct pathology. These findings suggest that HydraViT improves
erformance and reliability in multi-label CXR classification.

Finally, we examined the performance of HydraViT in multi-label
lassification qualitatively by inspecting the predicted labels in rep-
esentative CXR images. Fig. 4 displays the CXR images, correspond-
ng heatmaps extracted via the GradCAM method [66] that highlight
alient regions relevant to pathology, and the scores for top-5 predicted
abels. The ground-truth labels are annotated in green font. We ob-
erve that the top-ranked labels by HydraViT are closely aligned with
he ground-truth labels. In each case, the average score estimated by
ydraViT for the ground-truth labels is significantly higher than the
verage score for non-present labels within the list of top-5 (e.g., 0.4
ersus 0.1, 0.7 versus 0.1, 0.6 versus 0.1, 0.6 versus 0.2 for the
epresentative samples presented in Fig. 4). These results indicate that
ydraViT yields an accurate estimation of pathology in multi-label CXR
lassification.
8 
6. Discussion and conclusion

In this study, we proposed a novel deep learning method to improve
performance in multi-label CXR classification of thoracic diseases. The
proposed HydraViT model uses a hybrid convolutional-transformer
backbone to extract contextualized embeddings of CXR images, and a
multi-branch output module with adaptive weights to improve capture
of co-occurring pathology. While branched output modules have been
previously considered for multi-task learning problems in the machine
learning literature, to our knowledge, HydraViT is the first method
to devise a multi-branch architecture that comprises output heads for
individual and aggregated labels in multi-label classification.

A set of ablation studies were conducted to demonstrate the con-
tribution of individual design elements in HydraViT. These studies
indicate that the introduction of the transformer-based context encoder
helps significantly boost classification performance. They also indicate
that the multi-branch output module in HydraViT yields elevated per-
formance over training separate network models for each label and
training a single model with only separate heads for individual labels.
Note that there is also a computational benefit for training a single
multi-branch architecture as in HydraViT, which is nearly 14 times
faster compared to sequential training of single-branch architectures for
each pathology label separately.

HydraViT was comparatively demonstrated against state-of-the-art
deep learning methods for multi-label CXR classification. Attention-
guided, region-guided, and semantic-guided baselines were considered.
While there were occasional cases where a competing baseline yielded
comparable or higher scores for 1–3 pathology labels out of 14, Hy-
draViT generally outperformed baselines in the majority of labels.
Across all labels, HydraViT yielded the highest average performance
in multi-label classification. The success of HydraViT in identifying
the presence of multiple pathologies was also corroborated via visual
inspections. Therefore, our results suggest that HydraViT is a promising
approach for CXR-based classification of pathology in thoracic diseases.

Here, HydraViT was demonstrated on the ChestX-ray14 dataset that
contains over hundred thousand CXR images and associated pathology
labels across a diverse patient cohort. Naturally, the reliability of
data-driven deep-learning classifiers depend critically on the use of
such large, diverse training sets that accurately reflect the anatomical
variability and co-occurrence statistics of pathology. When trained on
limited CXR datasets with intrinsic biases in the data distribution,
multi-label classification models might suffer from poor generalization
performance. A potential remedy that can help enhance generalizability
under limited-data settings could be to use generative modeling ap-
proaches that synthesize CXR data with a high degree of anatomical and
label variability [51]. Future work is warranted to examine the perfor-
mance of HydraViT on other datasets possessing differences in the CXR
data distribution in order to comprehensively evaluate generalization
capabilities.

Despite its promising performance, several practical challenges
might hamper the rapid development and clinical adoption of Hy-
draViT. To facilitate deployment of the CXR classification model by
lowering computational demands, here we implemented HydraViT
based on a hybrid CNN-transformer architecture. The proposed ar-
chitecture improves computational efficiency by using light-weight
convolutional modules at relatively high spatial resolutions to extract
compact representations of input images, and by using parameter-dense
transformer modules on these representations to extract contextual
embeddings [67]. Still, transformer-based architectures elevate training
and inference times compared to simpler models (e.g., based solely
on a CNN), which can introduce challenges for users operating under
resource-constrained settings such as rural or underfunded healthcare
facilities. In such cases, knowledge distillation methods could be em-
ployed to transfer the information captured by a pre-trained HydraViT
model onto more compact models that can be run under limited

compute resources [68]. Hybrid CNN-transformer architectures have
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Fig. 4. Representative CXR images from the ChestX-ray14 dataset, and respective multi-label predictions generated by HydraViT. The top-5 predicted pathologies and probability
scores are listed, and the ground truth labels are marked in green. GradCAM-derived heatmaps for the CXR images are also given to highlight pathological regions.
become pervasive in recent years, and the backbones in HydraViT were
based on commonly available architectures in the literature. Further-
more, the multi-branch output module used learnable weights that do
not require any tuning. Yet, a degree of expertise could still be helpful
in tuning of optimization parameters in conjunction with specific
architectural choices. For users with limited expertise, establishment of
pre-trained models that manifest extensive transfer learning capabilities
might be a potential path to facilitate adoption of advanced models
such as HydraViT [37,50]. Meanwhile, since transformers rely on
relatively complex, non-local attention mechanisms, they may also face
additional challenges in terms of interpreting classification decisions as
an important component of model validation. Recent explanatory tech-
niques devised specifically for transformer-based architectures might
help alleviate this problem by building user trust [68,69].

Several technical limitations can be addressed in future work to
further improve the performance of HydraViT. Sensitivity for long-
range context can be further boosted by adopting a pure transformer
architecture at the expense of elevated model complexity. In those
cases, low-rank approximations on the self-attention matrix or pyra-
midal transformer architectures with limited attention windows can
help improve efficiency [69]. Note that the pathology annotations for
the CXR dataset analyzed in this study were mined from radiological
reports via language models, so they contain an inherent level of
noise [70]. Such noisy levels can introduce a degree of bias in trained
models that take annotations as ground truth. Learning procedures that
take into account the possibility of erroneous labels can help boost
classification performance. Here, a context encoder module equipped
with self-attention mechanisms was used to enable the model to focus
on pathological regions in CXR images. For improved localization,
anomaly detection on CXR images based on generative approaches such
as diffusion models could be utilized [48,49]. Finally, sensitivity for co-
occurrence relationships can be enhanced by adopting focal modulation
networks or state space sequences models instead of transformers with
self-attention filtering [71,72].

HydraViT contains a multi-branch output (MBO) module to improve
reliability in multi-label classification. Loss functions computed based
on the outputs of this module assign learnable weights to different
labels so as to balance their contributions, and maintain a degree of re-
liability against potential class imbalances. That said, we acknowledge
9 
that HydraViT can still show susceptibility to class imbalance partic-
ularly in the context of rare pathology, where scarce representation
of such pathology in the training data can prohibit adequate learning
regardless of loss term weightings. It might be possible to address this
challenge by performing discrimination among labels after embedding
them in a dedicated latent space according to their semantic similarities
with the intent to mitigate apparent biases due to a one-hot representa-
tion. In this manner, the intrinsic relationships between different labels
could be leveraged rather than relying solely on their frequency within
the training dataset [73,74]. Another limitation of the MBO module
concerns its growing complexity with the number of distinct pathology
labels, which might necessitate prolonged training on relatively larger
datasets in order to accurately capture label co-occurrence statistics. In
such cases, a hierarchical classification model can be built following
known disease taxonomies, and a separate HydraViT instance can be
used to run the decisions at each stage of the hierarchy [28].

In sum, here we introduced a novel multi-label classification model
for characterizing thoracic diseases from CXR images. Naturally, the
spatial encoder, context encoder and MBO modules in HydraViT were
designed to optimize performance for the X-ray modality. The general
architecture of HydraViT can be adopted for multi-label classification
tasks in other modalities such as MRI or CT assuming that adjustments
are performed to cope with varying image dimensionality. Yet, it
remains to be demonstrated whether the specific backbone choices in
HydraViT modules are preferable in other modalities given differences
in the distribution of images and pathology labels.
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