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A Plug-In Graph Neural Network to Boost
Temporal Sensitivity in fMRI Analysis

Irmak Sivgin, Hasan Atakan Bedel, Saban Ozturk, and Tolga Çukur , Senior Member, IEEE

Abstract—Learning-based methods offer performance
leaps over traditional methods in classification analysis
of high-dimensional functional MRI (fMRI) data. In this do-
main, deep-learning models that analyze functional connec-
tivity (FC) features among brain regions have been partic-
ularly promising. However, many existing models receive
as input temporally static FC features that summarize inter-
regional interactions across an entire scan, reducing the
temporal sensitivity of classifiers by limiting their ability to
leverage information on dynamic FC features of brain activ-
ity. To improve the performance of baseline classification
models without compromising efficiency, here we propose
a novel plug-in based on a graph neural network, Graph-
Corr, to provide enhanced input features to baseline mod-
els. The proposed plug-in computes a set of latent FC fea-
tures with enhanced temporal information while maintain-
ing comparable dimensionality to static features. Taking
brain regions as nodes and blood-oxygen-level-dependent
(BOLD) signals as node inputs, GraphCorr leverages a
node embedder module based on a transformer encoder
to capture dynamic latent representations of BOLD signals.
GraphCorr also leverages a lag filter module to account for
delayed interactions across nodes by learning correlational
features of windowed BOLD signals across time delays.
These two feature groups are then fused via a message
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passing algorithm executed on the formulated graph. Com-
prehensive demonstrations on three public datasets indi-
cate improved classification performance for several state-
of-the-art graph and convolutional baseline models when
they are augmented with GraphCorr.

Index Terms—Connectivity, functional MRI, graph, neural
network, time series.

I. INTRODUCTION

THE human brain comprises functional networks composed
of multiple brain regions that interactively process infor-

mation to mediate cognitive processes [1]. In turn, correlated
activity among brain regions within individual functional net-
works has been associated with unique mental states [2], [3], [4],
[5]. Functional MRI (fMRI) is a powerful modality to examine
networks as it can non-invasively measure whole-brain blood-
oxygen-level-dependent (BOLD) signals consequent to neural
activity at high spatio-temporal resolution [4], [6], [7]. In fMRI
studies, networks are commonly assessed via functional con-
nectivity (FC) measures that reflect similarity of BOLD signals
among brain regions [7], [8], [9]. The traditional approach to map
FC measures onto mental states is then based on conventional
methods such as logistic regression and support vector machines
(SVM) [10], [11], [12], [13]. Unfortunately, conventional meth-
ods often yield poor capture of intricate information patterns in
whole-brain fMRI time series [14].

In recent years, the success of deep learning (DL) models at
exploring features in high-dimensional datasets has motivated
their adoption for fMRI analysis as an alternative to conven-
tional methods [15], [16], [17], [18], [19]. Earlier attempts
in this domain have proposed shallow multi-layer perceptron
(MLP) [20], [21] and Boltzmann machine (BM) models [15],
[22]. Later studies have adopted deeper architectures based on
convolutional neural network (CNN) [16], [23], [24], graph
neural network (GNN) [8], [17], [25], [26], [27], [28], [29],
[30], and transformer [14], [31], [32], [33], [34] models for
improved performance. These models construct a set of nodes
corresponding to brain regions defined based on an atlas [29],
[35], [36], [37], and receive input features at these nodes based
on the FC strength among brain regions [17], [38]. A pervasive
approach has been to employ static FC features derived from
summary correlation measures across the entire fMRI scan [17],
[39]. Yet, this approach is often insufficiently sensitive to the
dynamic inter-regional interactions during resting-state or cog-
nitive tasks [40]. While alternative strategies have recently been
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proposed to capture the temporal variability in FC features,
these methods commonly consider instantaneous correlations1

across local time windows within the time series [41], [42],
[43]. As such, they lack explicit mechanisms to capture delayed
correlations2 eminent in fMRI data due to hierarchical cognitive
processing or hemodynamic lags in BOLD signals [44].

Here we introduce a novel plug-in graphical neural network,
GraphCorr, that provides enhanced input features to baseline
classification models so as to boost their sensitivity to dynamic
inter-regional interactions in fMRI data. To capture instanta-
neous interactions, GraphCorr leverages a novel node embedder
module based on a transformer encoder that computes hier-
archical embeddings of windowed BOLD signals across the
time series. To capture lagged interactions, GraphCorr employs
a novel lag filter module that computes nonlinear features of
cross-correlation between pairs of nodes across a range of
time delays. The graph is initialized with node features taken
as hierarchical embeddings, and edge weights taken as cross-
correlation features. Afterwards, a message passing algorithm
is used to compute enhanced node features that account for
dynamic, lagged inter-regional interactions, while maintaining
comparable feature dimensionality to static FC features.

To demonstrate GraphCorr, we conduct comprehensive ex-
periments on two benchmark tasks and three public datasets
frequently reported in the literature. Sex is assumed to be an
important biological variable driving the functional organization
of the brain in normal and disease states, and recent studies report
gender-specific differences in functional connectivity among
brain regions [38], [45], [46]. Thus, we first examine gender
detection on resting-state scans in the HCP-Rest dataset from
Human Connectome Project [47] and on movie-watching fMRI
scans in the ID1000 dataset from Amsterdam Open MRI Collec-
tion [48]. Functional connectivity differences are not exclusive
to resting state, but they have also been reported during intentful
execution of various cognitive tasks [30], [41], [49]. Thus, we
also examine cognitive-task detection on task-based fMRI scans
in the HCP-Task dataset [47].

GraphCorr is used as a plug-in to augment state-of-
the-art learning-based fMRI classifiers including graphical
(SAGE [50], GCN [27]), and convolutional (BrainNetCNN [16])
baselines. We find that, for each baseline model, the GraphCorr-
augmented variant significantly outperforms the vanilla variant
as well as variants augmented with dynamic FC features or with
gated recurrent units (GRU). We further devise an explanatory
approach for GraphCorr to interpret the brain regions that most
significantly contribute to classification decisions. We show that
GraphCorr offers interpretations that are closely aligned with
prominent neuroscientific findings from the literature.

II. RELATED WORK

Cognitive processes in the human brain elicit broadly dis-
tributed response patterns spanning across multiple brain re-
gions [51], which can be analyzed to classify stimulus or task

1Instantaneous correlation: Cross-correlation between BOLD signals of a
pair of brain regions under zero time delay.

2Delayed correlation: Cross-correlation between BOLD signals of a pair of
brain regions under non-zero time delay.

variables [52], [53]. Many analysis methods for fMRI rely on
feature selection procedures to cope with the intrinsically high
dimensionality of fMRI data [40], [54], [55]. Arguably, FC mea-
sures among brain regions have been the most commonly used
feature set [16], [17], [20], [38]. Previous studies have reported
that external variables or disease states can be detected given
FC features of individual subjects under resting state [56], [57],
[58], cognitive tasks [10], [17], or both [13]. Given their success
in fMRI analysis, FC features have also been adopted in recent
DL methods [59], [60]. Most commonly, static FC features have
been employed that take FC between a pair of regions as the ag-
gregate correlation of their BOLD signals across the entire scan.
To extract latent representations of FC features, initial studies
have proposed either shallow fully-connected architectures [15],
[20], [21], [22], or deep convolutional architectures [16], [24].
Later studies have considered GNN models given their natural
fit to analyzing fMRI data that follows an intrinsic graph-like
connectivity structure [17], [30], [61], [62], [63], [64]. While
these DL methods have enabled substantial improvements over
traditional methods, analyses based on static FC features can
yield suboptimal sensitivity to fine-grained temporal informa-
tion [11], [24].

Several groups of strategies have been proposed to incor-
porate time-varying features into DL-based fMRI analysis. A
first group pre-computes FC features over moving windows
across the time series based on standard correlation measures,
and concatenate them across windows [8], [42], [43], [65],
[66]. While these dynamic FC features carry enhanced temporal
information, their dimensionality grows with the number of time
windows and can undesirably increase complexity in baseline
classification models. A second group instead uses voxel-level
BOLD signals spatially encoded via a CNN module as model
input, and employ RNN or transformer models to extract time-
varying information [32], [41]. Yet, CNN modules based on
voxel-level inputs can be difficult to train from scratch under lim-
ited data regimes. A third group retains static FC features as their
input, albeit augments them with dynamic features that RNN
modules capture from BOLD signals [41]. Besides elevated
model complexity, these methods can suffer from limitations
of RNNs in terms of vanishing/exploding gradients [67], [68].
Importantly, these previous methods primarily focus on tem-
poral variations in instantaneous correlations, while neglecting
delayed inter-regional correlations [44].

Here, we propose to improve the classification performance
of baseline models via a novel plug-in, GraphCorr, that extracts
enhanced features with fine-grained temporal information from
fMRI data. The proposed plug-in embodies several unique tech-
nical attributes of potential value for fMRI analysis. Unlike
methods based on static FC features [16], [17], GraphCorr
leverages dynamic FC features to capture the temporal variabil-
ity in connectivity among brain regions. Unlike methods that
receive multiple sets of dynamic FC features across separate
time windows [8], [41], [69], GraphCorr leverages a message
passing algorithm formulated on a graph to fuse the dynamic
FC features it captures across windows to reduce feature dimen-
sionality while maintaining fine-grained temporal information,
thereby it avoids undesirable increases in complexity of baseline
classification models. Unlike methods that employ recurrent
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Fig. 1. Overview of GraphCorr. (a) GraphCorr utilizes two modules in parallel to extract dynamic, lagged features of inter-regional correlations
across the brain. The node embedder module receives as input time-windowed BOLD signals, and uses a transformer encoder to compute node
embeddings of dynamic FC features EMB ∈ RR×D×W (R: number of ROIs, D: embedding dimensionality, W : number of windows). The lag filter
module also receives as input time-windowed BOLD signals, albeit it computes lag activations due to cross-correlation between node pairs across a
range of time delays LAG ∈ RR×R×W×k (k: number of lag filters). (b) To consolidate the extracted feature sets on a graph, node embeddings are
taken as node features and lag activations are taken as edge weights. A message passing algorithm is then run on the graph to produce enhanced
FC features in an output feature matrix, OUT ∈ RR×(Dk+D).

architectures [41], it leverages a transformer encoder on dynamic
FC features that enables efficient parallel processing. Unlike
methods that solely focus on instantaneous correlations [16], it
adopts an explicit lag filter mechanism to learn delayed cross-
correlations. These advances enable GraphCorr to enhance the
level of temporal information available in the features input to
baseline classification models.

III. METHODS

Analysis procedures for fMRI time series typically start by
defining a collection of R regions-of-interest (ROI) across the
brain based on an atlas [17], [41]. Voxel-level BOLD signals
within each ROI are then averaged to derive ROI-level signals,
resulting in B ∈ RR×T as the matrix of BOLD signals where
T denotes the number of time frames, and R denotes the real
set. Static FC features are conventionally computed based on
Pearson’s correlation coefficient between the rows of this ma-
trix: sFCri,rj = Corr(Bri,·,Brj ,·), where sFC ∈ RR×R and
ri, rj ∈ 1, 2, . . ., R are ROI indices. While previous traditional
and learning-based methods commonly operate on static FC
features, here we propose to extract latent FC features with
enhanced temporal information based on a novel GNN plug-in,
and to use these enhanced features to improve the performance of

baseline models.3 Formulated on a graph, GraphCorr leverages
node embedder and lag filter modules to capture dynamic, lagged
correlations in BOLD signals, and performs message passing
on the graph to learn enhanced features (Fig. 1). The method-
ological components and procedures are described below. Code
for GraphCorr will be shared at https://github.com/icon-lab/
GraphCorr upon publication.

A. Graph Formation

As its learning substrate, GraphCorr first forms a binary graph
G(N,E) with a set of nodes N and a corresponding set of
edges E that reflect connections between pairs of nodes. The
node set N = {ROI(ri) | ri = 1, . . ., R} includes a total of R
ROIs defined according to the atlas. Meanwhile, the binary edge
set is taken as E = {〈ROI(ri),ROI(rj)〉 | ri = 1, . . ., R; rj ∈
N (ri)} where 〈·, ·〉 denotes a connection between two nodes,
and N (ri) denotes the neighborhood of nodes connected to the
ri-th node. Binary edges are derived by thresholding the ele-
ments in sFC to retain connections for the top z% percentile of
correlation coefficients (excluding self-connections), resulting
in a total of G edges [17]. An initial tensor of node features

3see [70] for a preliminary version of this work presented at SIU 2022
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Fig. 2. The node embedder module. The module input is a tensor of
time-windowed dynamic FC features dFC ∈ RR×R×W , with R denoting
the number of ROIs, W denoting the number of time windows. The
input tensor is processed via a transformer encoder with multi-head self-
attention (MHSA), layer normalization (LN), and multi-layer perceptron
(MLP) layers. Processing is performed for each time window separately.
The module output is a node embedding tensor EMB ∈ RR×D×W

where D is embedding dimensionality.

F = {fri | ri = 1, . . ., R} are defined based on time-windowed
BOLD signals to capture local dynamics in the fMRI time series.
For this purpose, the time series for each ROI containing T time
frames is split into W windows of size ΔT and stride value s:

W =

⌊
T −ΔT

s

⌋
. (1)

For a given node ROI(ri), this split time series is reformatted
into a matrix of windowed BOLD signals, fri ∈ RΔT×W . The
matrices for individual nodes are concatenated along the ROI
dimension to yield the feature tensor F ∈ RR×ΔT×W .

B. Network Architecture

Node embedder module: Receiving as input the initial fea-
ture tensor F, this module computes latent contextual repre-
sentations of dynamic FC features (Fig. 2). First, dynamic FC
features between pairs of ROIs are extracted as: dFCri,rj ,w =
Corr(Fri,·,w,Frj ,·,w) where w ∈ {1, . . .,W} denotes window
index, ri ∈ {1, . . ., R}, rj ∈ {1, . . ., R} denote ROI indices.
The extracted features are then processed with a transformer
encoder that learns contextual representations via attention be-
tween tokens in each window. Here, each token is taken as an
individual ROI, and the input vector for each token is taken as
its dynamic FC features with remaining ROIs (i.e., dFCri,·,w
for ROI(ri)). To enable attention calculations, the dynamic FC
features concatenated across tokens (i.e., ROIs) are subjected
to layer normalization (LN), and then window-specific ma-
trices for keys Kw ∈ RR×d, queries Qw ∈ RR×d and values
Vw ∈ RR×d are derived with learnable linear projection matrices
Uq, Uk, Uv ∈ RR×d:

Qw = LN([dFCr1,·,w,dFCr2,·,w, . . .,dFCrR,·,w]) Uq,

Kw = LN([dFCr1,·,w,dFCr2,·,w, . . .,dFCrR,·,w]) Uk,

Vw = LN([dFCr1,·,w,dFCr2,·,w, . . .,dFCrR,·,w]) Uv, (2)

where d is the embedding dimensionality for tokens. Note that
the above computations are performed separately for each win-
dow. The window-specific attention matrix Aw ∈ RR×R can
then be computed as [71]:

Aw = Att(Qw,Kw, Vw) = Softmax

(
QwK

ᵀ
w√

d

)
Vw, (3)

where ᵀ denotes matrix transpose. Note that we do not use any
position encoding for the tokens since we observed in early
phases of the study that inclusion of position encoding does
not yield notable performance differences. Next, the window-
specific attention matrix is propagated to an MLP block follow-
ing normalization:

EMB·,·,w = MLP(LN(Aw)) = GELU(LN(Aw)M1)M2,
(4)

where M1 ∈ RR×D and M2 ∈ RD×D denote MLP model pa-
rameters and GELU is a Gaussian activation function. In (4),
EMB ∈ RR×D×W denotes the output embedding tensor with
D taken as embedding dimensionality such that D < R.

Lag filter module: Receiving as input the tensor of node
features F (i.e., tensor of time-windowed BOLD signals), this
module computes delayed connectivity features between pairs
of ROIs across a range of temporal lags (Fig. 3). To store delayed
versions of signals within each window, the input tensor is first
zero-padded along the second dimension that spans across the
time frames within each window:

X = [0(R×m×W ),F(R×ΔT×W ),0(R×m×W )], (5)

where X ∈ RR×(ΔT + 2m)×W , and m is set to define the
range of time delays τ ∈ {−m,−m+ 1, . . ..,m− 1,m} that
will be considered in the module. Given a pair of nodes, the
window-specific cross-correlation between their BOLD signals
is computed at each lag value separately:

ρri,rj ,w,τ = (Xri,·,w �Xrj ,·,w)[τ ], (6)

where � denotes the cross-correlation operator, and ρ ∈
RR×R×W×(2m+1) is the cross-correlation tensor. Afterwards,
the cross-correlation vectors between each pair of connected
nodes (i.e., 〈ROI(ri),ROI(rj)〉 ∈ E) and each window are
mapped onto lag activations. This mapping is performed via
learnable lag filters MLF ∈ R(2m+1)×k with k denoting the
number of filters:

LAGri,rj ,w,· = GELU(ρri,rj ,w,· MLF ) (7)

where LAG ∈ RR×R×W×k is the lag activation tensor. Note
that LAGri,rj ,·,· is taken as 0 for 〈ROI(ri),ROI(rj)〉 /∈ E.

C. Graph Learning

The node embedder module produces an embedding tensor,
EMB, that reflects instantaneous inter-regional correlations
between graph nodes, whereas the lag filter produces a lag
activation tensor, LAG, that reflects delayed inter-regional cor-
relations between nodes. To consolidate these two feature sets
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Fig. 3. The lag filter module. The module input is a tensor of time-windowed BOLD signals F ∈ RR×ΔT×W , with ΔT denoting the duration
of each window. Delayed connectivity features of pairs of ROIs are computed as the cross-correlation of their BOLD signals, with delays
τ ∈ {−m,−m+ 1, . . ..,m− 1,m}. Afterwards, the cross-correlation tensor ρ ∈ RR×R×W×(2m+1) is linearly transformed with learnable lag filters
MLF ∈ R(2m+1)×k where k denotes the number of filters. The module output is the lag activation tensor LAG ∈ RR×R×W×k.

on the graph, node embeddings are taken as node features and
lag activations are taken as edge weights (Fig. 1). To compute
enhanced features, a message passing algorithm is then run
on the graph to fuse the feature sets [61]. For this purpose, a
four-dimensional message tensor MES ∈ RR×R×(D×k)×W is
derived. Window-specific messages aimed at a target ri-th node
originating from its neighbors rj ∈ N (ri) are computed as:

MESri,rj ,·,w = flatten(EMBri,·,w ⊗ LAGri,rj ,w,·), (8)

with ⊗ denoting outer product, and flatten(·) refers to vector-
ization. The incoming messages at the target node are averaged
across both windows and neighbours:

AGGri,· =
∑

rj∈N (ri)

1

W

W∑
w=1

MESri,rj ,·,w, (9)

where AGG ∈ RR×(D×k) is the aggregate message matrix for
the graph. The aggregate message is concatenated with the
window-averaged node embedding at each node ROI(ri):

OUTri,· =

[
1

W

W∑
w=1

EMBri,·,w,AGGri,·

]
. (10)

As such, OUT ∈ RR×(Dk+D) denotes the enhanced feature
matrix for the graph fusing features from node embedder and
lag filter modules.

IV. EXPERIMENTS

A. Experimental Procedures

Demonstrations were performed on fMRI data from the HCP
S1200 release4 [47] and ID1000 dataset from Amsterdam Open
MRI Collection (AOMIC)5 [48]. From the HCP S1200 release,
preprocessed data from resting-state fMRI scans (HCP-Rest)
and from task-based fMRI scans (HCP-Task) were analyzed. In
HCP-Rest, the first resting-state scan among four sessions was
selected for each subject, excluding short scans with T < 1200.
This resulted in a total of 1093 healthy subjects (594 female
and 499 male). In HCP-Task, scans recorded while partici-
pants performed 7 different cognitive tasks (emotion, relational,

4[Online]. Available: https://db.humanconnectome.org
5[Online]. Available: https://openneuro.org/datasets/ds003097/versions/

1.2.1

gambling, language, social, motor, working memory) were an-
alyzed, resulting in a total of 1095 healthy subjects (594 female
and 501 male). In the ID1000 dataset, preprocessed data from
fMRI scans recorded during movie watching were analyzed. All
scans had a fixed duration of T = 240. A total of 881 healthy
subjects were examined (458 female and 423 male). For all
datasets, two alternative sets of ROI definitions were obtained
based on commonly adopted brain atlases in the neuroimaging
literature. In particular, we considered the Schaefer atlas that
provides functional-connectivity-based definitions of R = 400
ROIs [72], and the AAL atlas that provides anatomy-based
definitions of R = 116 ROIs [35]. Since these atlases delineated
ROI boundaries based on anatomical versus functional criteria
and included different numbers of ROIs, thye allowed us to
examine performance under diverse settings.

Experiments were conducted on a single NVIDIA Titan Xp
GPU using the PyTorch framework. A nested cross-validation
procedure was performed with 5 outer and 1 inner folds. Data
were three-way split into a training set (70%), a validation set
(10%) and a test set (20%) with no subject overlap between
the sets. For fair comparison, all models were trained, validated
and tested on identical data splits. All models were trained
based on cross-entropy loss. For each model, hyperparameters
were selected to maximize the average performance across the
validation sets [17]. A common set of hyperparameters that were
observed to yield near-optimal performance were used across
datasets and atlases.

B. Comparison Studies

GraphCorr was comparatively demonstrated against alterna-
tive plug-in methods for state-of-the-art baseline classification
models. In all graph models, ROIs in a given brain atlas were
taken as nodes, and edge selection was then performed based
on Pearson’s correlation coefficient between BOLD signals.
Edges whose correlation coefficients were in the top z = 2%
were retained, while remaining edges were discarded [17].
Hyperparameters of both baseline models and plug-in methods
were selected to optimize validation performance. Implementa-
tion details are given below.

1) Baseline Models: Several graphical and convolutional
baseline models were examined for gender detection and
cognitive-task detection from fMRI scans.
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SAGE: SAGE is a GNN model based on modules containing
graph convolution, pooling and fully-connected layers [50].
A cascade of two graphical modules was used with a hidden
dimension of 250 and a dropout rate of 0.5. Cross-validated
hyperparameters were a learning rate of 3 × 10−3, 20 epochs,
and a batch size of 12.

GCN: GCN is a GNN model based on modules containing
graph convolution, pooling and fully-connected layers [27].
A cascade of two graphical modules was used with a hidden
dimension of 100 and a dropout rate of 0.5. Cross-validated
hyperparameters were a learning rate of 5 × 10−3, 30 epochs,
and a batch size of 12.

BrainNetCNN: BrainNetCNN is a CNN model based on
convolutional layers with edge-to-edge and edge-to-node fil-
ters [16]. A hidden dimension of 32 and a dropout rate of 0.1
were used. Cross-validated hyperparameters were a learning rate
of 2 × 10−4, 20 epochs, and a batch size of 16.

2) Plug-In Methods: Competing plug-in methods were used
to augment baseline models with different input features. Iden-
tical modeling procedures were used for vanilla and augmented
variants.

Vanilla: A vanilla variant was considered based on static FC
features sFC ∈ RR×R as model input.

Dynamic FC: An augmented variant was considered that
computed dynamic FC features across separate time windows
dFC ∈ RR×R×W via conventional correlation measures [69].
Time window definitions were matched to those in GraphCorr.

GRU: An augmented variant was considered that computed
temporally-enhanced FC features via an RNN model based on
GRU layers [73]. The output features had matching dimension-
ality to that of GraphCorr.

GraphCorr: The node embedder module was built with a
single-layer transformer encoder. Because scan durations dif-
fered across datasets, dataset-specific ΔT (window size) and
s (stride) were selected while common D (dimensionality),
m (maximum lag) and k (filter count) were used. Note that
(Dk +D) ∼ Rwas prescribed to avoid increases in dimension-
ality over static FC features. (ΔT = 50, s = 30, D = 50, m =
5, k = 3) were used for HCP-Rest and HCP-Task, while (ΔT =
40, s = 15, D = 50, m = 5, k = 3) were used for ID1000.

C. Explanatory Analysis

To assess the influence of GraphCorr on interpretability,
vanilla and augmented variants of baseline classification models
were examined via an explanation procedure to identify the
functional connectivity features that most saliently contribute
to the model decisions. For this purpose, a gradient-based ap-
proach was employed to extract saliency scores for each model
summarizing its important input features [38], [74].

For the vanilla variant, gradients were computed with respect
to the input static FC features sFC:

SALvan
ri,rj

= |∇sFCri,rj
y|, (11)

where SALvan ∈ RR×R in the gradient matrix across inter-
regional connections, and y denotes the model prediction.
SALvan was averaged across the column dimension to obtain

a gradient vector across ROIs:

rSALvan =

R∑
rj=1

SALvan
·,rj , (12)

where rSALvan ∈ RR. For the augmented variants, gradients
were computed with respect to the dynamic FC features dFC:

SALaug
ri,rj ,w

= |∇dFCri,rj ,w
y|, (13)

where SALaug ∈ RR×R×W is the gradient tensor across
window-specific inter-regional connections. SALaug was av-
eraged across the ROI (2nd) and window (3rd) dimensions to
obtain a gradient vector rSALaug ∈ RR across ROIs:

rSALaug =

R∑
rj=1

(
1

W

W∑
w=1

SALaug
·,rj ,w

)
. (14)

For reliable inference, significant ROIs with absolute gradient
values greater than zero were determined via a Wilcoxon signed-
rank test across the test set [75]. ROI-specific saliency scores
were taken as the negative log of p-values, and normalized to
yield a summed score of 1 across ROIs.

Next, we assessed the consistency between the cortical distri-
butions of ROI-specific saliency scores for a particular classifi-
cation task (e.g., gender detection from fMRI scans), and ROI-
specific importance scores for related cognitive variables (e.g.,
female, male) given neuroimaging literature. For a systematic
assessment, we employed the NeuroSynth framework devised
for meta-analysis of existing neuroimaging findings [76]. This
framework analyzes the coordinates of activation within articles
containing query cognitive variables, and returns importance
scores that reflect the representation strength of those variables
across ROIs. We examined the similarity between cortical maps
of saliency scores and importance scores. This analysis was
performed on ROIs with importance scores in the top 15%.

V. RESULTS

A. Comparison Studies

GraphCorr was demonstrated on several state-of-the-art
baseline classification models for fMRI analysis including
SAGE [50], GCN [27], and BrainNetCNN [16]. Vanilla variants
of baseline models based on static FC features were compared
against augmented variants based on dynamic FC features, GRU
and GraphCorr (see Methods). Performances of vanilla and
augmented variants of baseline models for gender detection
on HCP-Rest and ID1000, and for cognitive-task detection on
HCP-Task datasets are listed in Table I for the Schaefer atlas,
and in Table II for the AAL atlas. When using the Schaefer atlas,
GraphCorr outperforms competing methods in all cases (p <
0.05, Wilcoxon signed-rank test), except for HCP-Task where all
methods generally yield similar ROC saturated near 100%. On
average across baseline models and datasets, GraphCorr enables
(accuracy, ROC)% improvements of (8.6, 6.8)% over the vanilla
variant, (7.4, 5.2)% over the dynamic FC plug-in, and (9.3, 7.3)%
over the GRU plug-in. When using the AAL atlas, GraphCorr
again outperforms competing plug-ins in all cases (p < 0.05),
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TABLE I
PERFORMANCE OF BASELINE MODELS FOR GENDER DETECTION ON

HCP-REST AND ID1000, AND FOR COGNITIVE TASK CLASSIFICATION ON
HCP-TASK BASED ON THE SCHAEFER ATLAS. ACCURACY AND ROC ARE

LISTED AS MEAN ± STD ACROSS TEST FOLDS FOR NON-AUGMENTED
(VANILLA), DYNAMIC FC AUGMENTED (DYN. FC), GRU AUGMENTED
(GRU), AND GRAPHCORR AUGMENTED (GRAPHCORR) VARIANTS

TABLE II
PERFORMANCE OF BASELINE MODELS FOR GENDER DETECTION ON

HCP-REST AND ID1000, AND FOR COGNITIVE TASK CLASSIFICATION ON
HCP-TASK BASED ON THE AAL ATLAS

except for GRU that yields occasionally yields similar ROC
on HCP-Task. On average, GraphCorr enables improvements
of (13.8, 10.0)% over the vanilla variant, (9.6, 7.2)% over the
dynamic FC plug-in, and (9.4, 6.3)% over the GRU plug-in.
Taken together, these results suggest that GraphCorr captures
an enhanced set of FC features to augment baseline models for
fMRI analysis, and thereby it improves classification perfor-
mance over competing plug-in methods.

We also observe that vanilla variants of the relatively simpler
graphical models (SAGE and GCN) perform poorly against
the more complex BrainNetCNN model. However, GraphCorr-
augmented variants of these graphical models can perform com-
petitively with the augmented BrainNetCNN. For the Schaefer
atlas, the average performance gap between BrainNetCNN and

graphical models is lowered from (5.3, 6.3)% in the vanilla
variants to (−0.1, 1.0)% in the GraphCorr-augmented variants.
For the AAL atlas, the average performance gap between Brain-
NetCNN and graphical models is lowered from (5.1, 4.2)% in
the vanilla variants to (−0.3, 0.7)% in the GraphCorr-augmented
variants. These results suggest that the feature extraction capa-
bilities of vanilla GNN models might be suboptimal in compar-
ison to CNN models, albeit a powerful plug-in on the input side
can mitigate this deficit.

B. Explanatory Analysis

To assess the influence of GraphCorr on interpretability, ex-
planatory analyses were conducted on vanilla and augmented
variants of baseline classification models. These analyses exam-
ined the importance of each input FC feature on the model deci-
sions. For this purpose, the gradients of the model output with re-
spect to individual FC features were computed and ROI-specific
saliency scores were obtained from the gradients (see Methods).
SAGE was selected as the baseline model since it generally
maintains the highest performance after GraphCorr augmenta-
tion (Tables I–II). Gender detection on HCP-Rest was analyzed
that involves distinguishing between female and male classes.
For cognitive-task detection on HCP-Task, the motor task was
analyzed as a representative case that involves distinguishing
between motor and remaining non-motor tasks. Reference im-
portance scores of each ROI for representing variables related to
the classification task (i.e., ‘female-male’ for gender detection,
‘motor task’ for cognitive-task detection) were derived from a
meta-analysis via the NeuroSynth framework (see Methods).
Cortical maps of saliency scores were visualized for the vanilla,
dynamic FC-augmented and GraphCorr-augmented variants,
along with reference cortical maps of importance scores.

Fig. 4 depicts results for gender detection. For the vanilla
variant, saliency scores are significant in the left hemisphere
(LH) for few regions within parietal, somatomotor, and pre-
frontal cortices; and for several regions within the right hemi-
sphere (RH) for visual, parietal, somatomotor, temporal, and
prefrontal cortices (p < 0.05, Wilcoxon signed-rank test). For
the dynamic-FC augmented variant, saliency scores are signif-
icant in LH for few regions within parietal, somatomotor, and
prefrontal cortices; and in RH for several regions within visual,
parietal, somatomotor, temporal, and prefrontal cortices. Mean-
while, for the GraphCorr-augmented variant, saliency scores
are significant in LH for a greater number of regions within
prefrontal cortices, temporoparietal junction and frontal opercu-
lum insula; and in RH for regions within visual, ventral frontal,
lateral parietal cortices, and frontal operculum insula. Compared
to other variants, GraphCorr generally yields a more consis-
tent cortical distribution of saliency scores with respect to the
reference importance maps, especially near regions associated
with attention, default mode and control networks. Literature
suggests that these networks carry prominent information for
discriminating between female and male subjects [38], [46]. In
particular, regions in the attention (frontal operculum insula)
network are assumed to be involved in spatial processing, at-
tentional control, and working memory. Meanwhile, regions
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Fig. 4. Explanatory analysis for gender detection classifiers. Saliency
maps are shown for vanilla, dynamic FC- and GraphCorr-augmented
SAGE models on the HCP-Rest dataset, along with reference impor-
tance maps derived via a meta-analysis of neuroimaging literature. Im-
portant ROIs are marked with colored spheres. In saliency maps, sphere
size indicates the relative saliency score for each ROI. In importance
maps, sphere size indicates the relative importance score. Color-coding
indicates membership to functional networks: (Vis = Visual network,
Attn = attention network, SMN = sensorimotor network, Cont = control
network, DMN = default mode network.).

in the default mode network (temporoparietal junction) are
assumed to be involved in aspects of social cognition such as face
recognition and emotion processing, and regions in the control
network (prefrontal) are assumed to be involved in high-level
cognition including decision making [45], [46]. Previous studies
have reported gender differences in these cognitive abilities, and
in activations across associated regions [46], [77].

Fig. 5 depicts results for the motor task included in the
cognitive-task detection analyses. Consistently across variants,
saliency scores are generally significant in both hemispheres
for few regions within precentral cortex, and in LH for few
regions within supplementary motor cortex (p < 0.05, Wilcoxon
signed-rank test). Yet, for the GraphCorr-augmented variant,
saliency scores are also significant in LH for a region within
cingulate cortex, and in RH for a region within supramarginal
gyrus. Compared to other variants, GraphCorr generally yields
a more consistent cortical distribution of saliency scores with
respect to the reference importance maps, including regions
associated with attention, sensorimotor, and default mode net-
works. Literature indicates that these networks carry prominent
information for discriminating motor from non-motor cognitive
tasks [46]. In particular, regions in the attention (precentral)
network are assumed to be involved in motor planning, regions in
the sensorimotor network (supplementary motor) are assumed to
be involved in motor execution, and regions in the default mode

Fig. 5. Explanatory analysis for cognitive-task detection classifiers.
Saliency maps for the motor task are shown based on vanilla, dy-
namic FC- and GraphCorr-augmented SAGE models on the HCP-Task
dataset, along with reference importance maps derived via a meta-
analysis of neuroimaging literature.

network (cingulate, supramarginal) are assumed to be involved
in motor control and association of motor and sensory data [38].
Taken together, these results suggest that GraphCorr elicits
explanations that are more closely aligned with neuroscience
findings in the literature.

C. Ablation Studies

Ablation studies were performed to assess the contribution
of the individual design elements in GraphCorr to model per-
formance. These analyses were conducted based on the SAGE
model using the HCP-Rest dataset and the Schaefer atlas, i.e.,
the setting that yields the highest overall performance for gender
detection. First, we assessed contributions of the node embedder
module, lag filter module, and time windowing in GraphCorr.
To ablate the node embedder module, node embeddings prior
to message passing were initialized with the unlearned time-
windowed FC matrix derived via conventional correlation mea-
sures on BOLD signals. To ablate the lag filter module, a single
filter at zero lag was used within the module to consider only
instantaneous correlations. To ablate time windowing, the entire
fMRI time series was provided to GraphCorr with a single win-
dow of size equal to the scan duration (i.e.,ΔT =1200). Table III
lists performance metrics for ablated variants of GraphCorr. We
find that the node embedder module, the lag filter module and
time windowing enable (accuracy, ROC)% improvements of
(5.3, 3.2)%, (0.7, 0.2)%, and (8.4, 5.6)%, respectively. These
results suggests that all design elements contribute to improving
model performance.
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TABLE III
PERFORMANCE FOR GRAPHCORR VARIANTS ABLATED OF INDIVIDUAL

DESIGN ELEMENTS IN GENDER DETECTION. RESULTS LISTED FOR THE
AUGMENTED SAGE MODEL ON THE HCP-REST DATASET WITH THE

SCHAEFER ATLAS

TABLE IV
PERFORMANCE FOR GRAPHCORR VARIANTS THAT USE ΔT = [25 1000]

WHILE S = 30, AND S = [25 50] WHILE ΔT = 50 FOR GENDER
DETECTION. RESULTS LISTED FOR THE AUGMENTED SAGE MODEL ON

HCP-REST WITH THE SCHAEFER ATLAS

Next, we evaluated GraphCorr variants obtained by employ-
ing different time windowing procedures on the original fMRI
time series. In particular, we examined the influence of the
window size (ΔT ) and stride (s) parameters on gender detection
performance. Separate variants were trained forΔT = [25 1000]
while s = 30, and for s = [25 50] while ΔT = 50. Table IV
lists performance metrics for GraphCorr variants based on the
SAGE model using the HCP-Rest dataset and the Schaefer atlas.
We find that the values of window size and stride selected based
on validation performance yield near-optimal performance on
the test set, and that there are modest performance variations
with changing window size or stride in the immediate neighbor-
hood of selected values. That said, for window size, a notable
performance drop occurs as early as ΔT = 200 and grows
further towards larger ΔT . For stride, a notable performance
drop occurs at s = 50.

GraphCorr is devised to improve capture of information
in time-varying FC patterns without expanding dimensional-
ity compared to static FC (sFC) features. To assess whether
GraphCorr-based features carry enhanced temporal information
over sFC features, we conducted an analysis with conventional
dynamic FC (dFC) features based on time-windowed correlation
measures taken as reference. For improved fidelity in this anal-
ysis, the HCP-Task dataset was examined where BOLD signals
follow a more structured time-course due to the task instructions
given to subjects [47]. To obtain a basis for time-varying FC

Fig. 6. Analysis of temporal sensitivity for GraphCorr on HCP-Task
with the Schaefer atlas. (a) As reference for time-varying FC patterns
in fMRI scans, conventional dynamic FC (dFC) features were computed
via time-windowed correlation measures on BOLD signals. Principal
components analysis (PCA) was performed on the dFC features across
time windows to obtain a basis for time-varying FC patterns. The first
6 PCs that explain 95% of the variance were selected. (b) Static FC
(sFC) features and GraphCorr-based FC features were extracted. Since
GraphCorr outputs features in a latent embedding space, FC features
were derived via correlation measures between the embedding vectors
for pairs of ROIs. (c) GraphCorr-based FC and sFC features were
projected onto the PCs. In general, GraphCorr yields higher projections
onto the PCs than sFC.

patterns in fMRI scans, we performed principal components
analysis (PCA) on dFC features across time windows. The first
6 PCs that explain 95% of the variance in dFC features were
selected. We reasoned that if a feature set carries enhanced
temporal information, then it should have stronger projections
onto the PCs of reference dFC features. Fig. 6 displays the PC
projections for GraphCorr-based FC features and sFC features.
We find that GraphCorr generally elicits higher projections onto
each individual PC, corroborating that it offers enhanced capture
of time-varying FC patterns in its output features.

VI. DISCUSSION

Here we reported a novel plug-in GNN method, GraphCorr,
to improve the performance of classification models for fMRI
analysis by capturing dynamic, lagged FC features of BOLD
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signals. Demonstrations were provided on three large-scale
fMRI datasets, where substantially improved performance was
achieved following model augmentation with GraphCorr. For
explanation of these results, the cortical distribution of saliency
scores for each augmentation method was compared against
NeuroSynth-based reference importance maps derived from a
diverse collection of studies that use task-based and resting-state
fMRI as well as other modalities. While a native degree of
discrepancy can be present with the datasets examined here,
NeuroSynth enables large-scale analyses with statistical power
exceeding that of isolated analyses on few tens of subjects in
individual studies [78], so it serves as a reliable benchmark
to interpret neuroimaging findings [79], [80], [81]. Compared
to vanilla and dynamic-FC augmented variants of classification
models, we find that the GraphCorr-augmented variant yields a
greater number of significant regions whose saliency scores are
closely aligned with reference importance maps. Note that the
saliency maps are derived based on model gradients with respect
to input features, so both the level of task-relevant information in
input features and the learning accuracy for model weights can
influence the significance of brain regions. For the vanilla vari-
ant, the limited number of significant regions can be attributed
to the lack of temporal information in sFC features on dynamic
changes across fMRI scans. While the dynamic FC method
provides enhanced temporal information to the classification
model, the high dimensionality of dFC features can compromise
accuracy of learned model weights and thereby gradients. Thus,
the relatively lower number of significant regions might be
attributed to these inaccuracies.

A mainstream approach in neuroimaging studies rests on
prediction of experimental variables typically related to stimulus
or task from BOLD signals [40], [53]. Here we adopted this
approach to build decoding models that predict subject gender
and cognitive task from fMRI scans. The proposed method can
also be combined with classification models to predict other
categorical variables related to disease [16], [17] or continuous
variables related to stimulus or task features [1]. An alterna-
tive procedure to examine cortical function rests on encoding
models that instead predict BOLD signals from experimental
variables [44], [49], [82]. It may be possible to adopt GraphCorr
to improve sensitivity of such baseline encoding models. In this
case, GraphCorr would receive as input the time course of ex-
perimental variables during an fMRI scan. In turn, it would learn
dynamic, lagged correlations among experimental variables to
better account for their time-varying distribution. Learned cor-
relations might help improve performance of regression models
that aim to predict measured BOLD signals. Future work is
warranted to investigate the potential of GraphCorr in building
encoding models for fMRI.

An important parameter set for GraphCorr, related to its
ability to enhance fine-grained temporal information in its output
features, includes the window size ΔT and the window stride s.
These parameters control the extent of time windows over which
instantaneous interactions are computed in the node embedder
module, and lagged interactions are computed in the lag filter
module. In theory, lower ΔT and s should increase sensitivity
to relatively rapid temporal changes in fMRI scans. In practice,

however, the dynamic FC features input to GraphCorr are ex-
tracted via correlation measures on noisy measurements, so the
accuracy of FC features can be degraded for shorter windows
with fewer time frames. Given this intrinsic trade-off between
temporal sensitivity and feature accuracy, different parameter
values could be preferred based on the rate of temporal fluctua-
tions and noise levels. Here we observed moderate differences
in the optimal parameters for separate datasets, and a degree of
reliability in classification performance under reasonable varia-
tions in parameter values. Yet, parameter tuning might serve a
more critical role when analyzing datasets acquired at relatively
low field strengths or high spatio-temporal resolutions.

Limitations

Several technical limitations related to GraphCorr can be
addressed to further improve performance and efficiency in
fMRI analysis. Here, GraphCorr was trained end-to-end with
classification models on the HCP-Rest, ID1000, or HCP-Task
datasets that each contain data from nearly a thousand sub-
jects. While the lag filter module has low complexity, the node
embedder module uses a transformer encoder with a relatively
large number of parameters. In turn, high model complexity can
elicit suboptimal learning on compact datasets of limited size.
When learning deficiencies are suspected, transfer learning can
be performed where the encoder is initialized with pre-trained
weights [83]. Learning might also be enhanced via data aug-
mentation procedures that can produce a large variety of realistic
samples from a learned distribution [84], [85].

Another practical concern related to the transformer encoder
in the node embedder module is the inference time, which
scales quadratically with the length of the input sequence of
tokens [33]. This quadratic scaling could yield notable burden
while processing data from fMRI scans with significantly high
spatial and/or temporal resolution. When computational burden
becomes prohibitive, partitioning mechanisms on attention lay-
ers such as multi-query attention might be adopted to improve
inference efficiency [86].

In this study, each subject’s fMRI scan was aligned to an
anatomical template to define brain regions with guidance from
an atlas. The mean BOLD signals across voxels in each ROI were
then processed in plug-in methods and thereby classification
models. Benefits of this approach include consistency in ROI
definitions across subjects and computational efficiency due to
relatively lower model complexity [87]. Yet, information losses
naturally occur during registration of individual-subject fMRI
data onto a standardized template. To alleviate these losses, ROI
definitions in the template space could instead be backprojected
onto the brain spaces of individual subjects. This alternative pro-
cedure can mediate ROI definitions while maintaining acquired
fMRI data in its original anatomical space for improved spatial
precision [53].

In GraphCorr, an initial graph is formulated where nodes are
taken as ROIs defined according to a brain atlas, and binary
edges are defined between ROIs whose static FC values exceed
a certain threshold. For the fMRI datasets examined here, we
observed that these binary edge definitions that are kept fixed
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during subsequent training procedures yield reasonably high
performance. When desired, it may be possible to seek further
performance improvements via an adaptive graph formulation
where both the ROI definitions and the edge weights between
the ROIs are taken as learnable parameters, at the expense of
elevated model complexity.

Here, we primarily examined cross-subject generalization
performance of vanilla and augmented classification models,
where models were trained and tested on independent splits
extracted from a given dataset. In certain applications, it may
be desirable to transfer classification models across different
imaging sites that may utilize different scanners and fMRI
protocols. In such cases, data or model aggregation frameworks
can be adopted to train models that reliably cope with shifts in
the distribution of fMRI data across sites [60], [88], [89].

VII. CONCLUSION

In this study, we introduced a novel plug-in graph neural net-
work, GraphCorr, to improve the performance of learning-based
models for fMRI classification. GraphCorr employs node em-
bedder and lag filter modules to sensitively extract dynamic and
lagged functional connectivity features from whole-brain fMRI
time series. As such, it transforms raw BOLD signals into an
efficient graph representation where neighboring nodes are taken
as brain regions with correlated signals and node features are
extracted via message passing on connectivity features from the
two modules. This procedure restores the fine-grained temporal
information that can otherwise be diminished in conventional
functional connectivity features. As augmenting baseline clas-
sification models with GraphCorr significantly improves their
performance and interpretability, GraphCorr holds great promise
for analysis of fMRI time series.
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